
Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 82

On the Speedup/Delay Trade-Off
in Distributed Simulations

Alessandra Pieroni alessandra.pieroni@uniroma2.it
Enterprise Engineering Department
University of Rome TorVergata
Rome, Italy

Giuseppe Iazeolla giuseppe.iazeolla@uniroma2.it
Engineering Department
University of Rome TorVergata
Rome, Italy

Abstract

Assume a local simulator (LS) of a given system is available and we wish to turn it into a
distributed simulator (DS). In the DS case, the LS is partitioned into segments called federates,
each federate being run by a separate host. Before implementing the DS (i.e., at design-time) we
wonder: will the DS execution time be shorter than LS one? In some cases the DS may run
slower than the equivalent LS. To answer this question we are to consider that the execution
time of a distributed simulation system depends on 3 interacting factors: 1) the speedup (or run-
time gain) resulting from the partitioning of the local simulator into federates. 2) The network
delays in the federate synchronization messages exchange. 3) The network delays inthe
federatedata messages exchange. The combination of such factors makes very hard predicting
the benefits of the LS-to-DS transformation. In this paper, a LS/DS decision procedure to support
the LS/DS decision process at design-time. The procedure is guided by a performance model of
the DS. The use of the High Level Architecture (HLA) distributed simulation standard is assumed.

Keywords:distributed simulation,parallel speedup, computer networks delay.

1. INTRODUCTION
A simulation model can be seen as consisting of a set of sub-models. In local simulation (LS), a
single model exists that simulates the entire system and is run by a single host. In distributed
simulation (DS), various sub-models (called federates) simulate distinct parts of the system and
are run by separated hosts connected via a LAN, MAN or WAN computer network or a
composition thereof.
Predicting at design-time the convenience of implementing the DS version of the LS can be of
interest. Indeed, the development of a DS system is a complex and expensive task, since of the
cost of achieving the necessary know-how of the distributed simulation standard [1], the cost of
the extra-lines of code to develop for each federate [2], the cost of the hosts, the computer
networks, and the number of design alternatives to face (in terms of simulator partitioning, host
capabilities, network potentialities and so on).

This paper introduces a method to support the evaluation of the DS convenience before
implementation. The method investigates the effects of three interacting factors:

1) The speedup (or run-time gain) resulting from partitioning the local simulator into federates,
spread across various hosts that operate in parallel; 2) the synch-communication overhead due to
network delays in the exchange of synchronization messages among federates; 3) the data-
communication overhead due to network delays in the exchange of data messages among
federates.

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 83

The two communication overheads lower down the run-time gain obtained with the speedup.

A LS/DS decision procedure is proposed to choose (at design-time) whetherto remain on the LS
version of the simulator orcarry out the implementation of its DS version. The procedure is
guided by a performance model (PM) of the DS. The model can be used to perform what-if
analysis and sensitivity analysis to observe how changing one or the other factor may affect the
DS execution time. The PM assumes the DS is based on the HLA protocol standard and
middleware [3].

The paper is organized as follows: Sect.2 presents the problem statement. Sect.3 illustrates the
PM. Sect.4 illustrates the PM implementation in the OMNet++ simulation language and its use in
the LS/DS decision procedure. Sect.5 presents the paper contribution with respect to existing
literature and finally Sect.6 gives concluding remarks.

2. PROBLEM STATEMENT
Assume a local simulator (LS) of a given system Σ is available, and that we wish to turn it into a
distributed simulator (DS).

In the DS case, the LS is partitioned into segments called federates, each federate being run by a
separate host. Fig.1 shows the two federate case, with NS denoting the network for the exchange
of synch messages and ND the one for data messages.

FIGURE 1:DS system with two federates.

Before implementing the DS (i.e., at design-time) we wonder: will the DS execution time be
shorter than LS one? In some cases the DS may run slower than the equivalent LS. To answer
this question a Performance Model (PM) of ak-federate system is introduced in Sect.3.

The following terminology will be used throughout the paper:

 Σ = System to be simulated

 LS(Σ) = Local Simulator of Σ

 TLS = LS execution time

 DS(Σ) = Distributed Simulator of Σ

 TDS = DS execution time

 PM(DS(Σ)) = Performance Model of DS(Σ) to predict the execution time TDS.

The question is: when does DS(Σ) run faster than LS(Σ)? In other words, when does TDS < TLS
hold?

There are 3 conflicting factors that determine the TDS value:

 Speedup: the run-time gain resulting from partitioning LS into federates spread across
many hoststhat operate in parallel.

Data	message	

Host2	

Fed_1	 Fed_2	

Host1	

Synch	message	

NS

ND

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 84

Thanks to the speedup one may obtain TDS< TLS, the speedup being defined by S = TLS /
TDS, a positive speedup meaning S > 1. Let us call S the no-delay speedup, for reasons
that will be soon clear.

 Synch communication overhead: all DS simulations must incorporate techniques to
coordinate the execution of federates across the many hosts by synchronization
messages. Such messages travel along a synch network NS (that may be a LAN, a MAN
or a WAN, or a composition thereof) whose delay ΔNS may yield a T’DS> TDS thus
reducing the no-delay speedup S to a synch-delay speedup S’<S with S’= TLS / T’DS.

 Data communication overhead: the federates also need to exchange data-packets by
way of data messages. Such messages travel along a data network ND (that may or may
not coincide with NS), whose delay ΔND may yield a T”DS>T’DS thus reducing the synch-
delay speedup S’ to a synch&data-delay speedup S”<S’ with S”= TLS / T”DS.

The question above then becomes:
When does T”DS turn out to be lower than TLS (T”DS< TLS), thus still yielding a positive speedup
S” > 1?
In other words, when can the no-delay speedup win over the synchronization and data
communication overheads?
Next section tries to answer such a question.

2.1 The speedup/communication overhead trade-off
As with most parallel computations, to obtain a positive speedup the portion of LS that can be
parallelized must be large relative to the portion that is inherently serial. Let us denote by S(N) the
maximum speedup that can be achieved using N processors, and by Q the fraction of
computation that is inherently serial. According to Amdahl’s law [4,5] even with an arbitrarily
large number of processors (N→∞), S(N) can be no larger than the inverse of the inherently serial
portion Q of LS.

 (1)

Thus, one requirement for the DS code to achieve positive speedups is that the fraction Q should
be small.

An appropriate partitioning of LS into a set of federates should then be found at design-time that
improves S while maintaining the synch and data overheads low. In other words, a partitioning
that yields a high computation-to-communication ratio (i.e., a large amount of computation
between communications).

On this basis, an LS/DS decision procedure can be foreseen (Fig.2) to decide whether to remain
on the LS version of the simulation system or carry out the implementation of its DS version.

In other words, assume an LS(Σ) has been developed and that its TLS is not satisfactory. A
search for an appropriate partitioning of LS(Σ) into federates and for an appropriate choice of the
NS and ND networks has to be performed by the iterative use of the PM(DS(Σ)), to obtain a T’’DS<
TLS.

At each iteration, if the T’’DS predicted by the PM is sufficiently lower than TLS, the decision to
implement the DS(Σ) can be taken.

Otherwise, one may either try a new tentative partitioning or try alternative networks NS and ND of
improved capabilities. In case no partitioning nor network improvements can be found, one may
decide not to implement the DS(Σ).

S(N) =
1

Q+
1-Q

N

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 85

En example use of the PM in the LS/DS decision procedure is illustrated in Sect.4. The PM
cannot be evaluated by analytic methods and thus its evaluation is simulation-based. The coding
of the PM is done in the OMNet++ simulation language [6] and an example coding is provided in
Sect.4.

FIGURE 2: The LS/DS decision procedure

3. RELATED WORK
A number of existing contributions can be found in literature that address the prediction of
execution times of simulation systems, see e.g., [5, 15, 16, 17, 18, 19, 20].

Contributions in [15, 16, 18, 19, 20] however deal with parallel simulation case rather than
distributed case, as is this paper. Parallel simulations are run by a set of processors that are
tightly connected by use of dedicated networks rather than by a computer network, as is this
paper case (a set of processors connected by a computer network, such as a LAN, a MAN or a
WAN, or a composition thereof). Moreover, parallel simulations are coordinated by an ad hoc
network-operating system rather than by DS middlewares (e.g. HLA) as is this paper case.

Develop	

LS(Σ)	

Defin

e

	LS	par oning	and	

ND,	NS	capabili es	

LS(Σ)		

exec	 me	
Ok?	

Accept	LS(Σ)	

Use	PM(DS(Σ))	to	predict		

DS(Σ)	execu on	 me	(T’’DS)	

Develop	

DS(Σ)	

yes	

no	

DS(Σ)		

exec	 me	
Ok?	

no	 Prefer	to		

operate	on	
par oning	

Exists		

alterna ve	
par oning	

yes	

yes	

no	

Prefer	to		

operate	on	
ND	

yes	

Exists		

alterna ve	
ND	

yes	

Exists		

alterna ve	
NS	

no	no	worth	to		

develop	DS(Σ)	

no	

yes	

yes	

no	

no	

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 86

In other words, our paper cannot take advantage from results of the parallel simulation literature.
On the other hand, looking at the distributed simulation literature, the only work that,to our
knowledge, one can refer to is [17], which however only deals with the performance of DS shared
data-access algorithms, a topic that is not of interest to our paper, which instead is interested to
the evaluation of the whole DS execution time (TDS).

There are two essentially different ways for evaluating theTDS.One way is to base the analysis on
the execution of a DS run. The other way (this paper way) is to use the LS version of the
simulator to derive parameters for predicting the TDS. While the first method is potentially more
accurate, its main disadvantage is that it requires the existence of the DS program, hence it
cannot really predict TDS, and it can only be used to evaluate the TDSof a given DS
implementation.

In a previous work [12], the trace information generated during the LS run has been obtained and
it will be used in this paper now to derive parameters to give to the performance model (PM) of
the DSfor the TDS prediction.

The PM, this paper now introduces, is able to separately investigate the effects of the model
partitioning, and also investigate separately the effects of the NS delay and of the ND delay.
Besides being important for the LS/DS decision procedure, the knowledge of the effects of the
two communication overheads is of importance to evaluate the representativeness of the DS(Σ)
at design-time.

Indeed, depending on the nature of system Σ, there are situations in which the data and synch
message delays are not critical and thus a communication network of any capability can be used.
On other situations, instead, the system Σ can be of such a nature that the synch and data delays
become very critical for the representativeness of the system simulator. In other words, the DS(Σ)
looses the capability of realistically representing the original Σ in case the NS and ND networks are
not sufficiently well performing.

4. THE PERFORMANCE MODEL OF DS(Σ)
It is assumed the reader is familiar with the structure of an HLA federation, based on the so-called
Run Time Infrastructure (RTI) [7]. The RTI is the software that allows the federates to execute
together. In Fig.3 the interface between the RTI and the federates is illustrated [8]. The
federates do not talk to each other directly. They are instead connected to the RTI and
communicate with each other using services provided by the RTI. The RTI offers to each
federate an interface called RTI Ambassador.

Each federate on the other hand presents an interface called Federate Ambassador to the RTI.

FIGURE 3: HLA federation structure

In the following we shall denote by:
• LEX the local execution internal to a federate, in other words, the standard simulation
operations such as event processing, event routines, scheduling of local events, etc.

Federate	 Federate	

Federate	Ambassador	 Federate	Ambassador	

RTI	Ambassador	 RTI	Ambassador	

Run me	Infrastructure	

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 87

• HLAR the execution internal to a federate of an RTI service, e.g., an invocation of a time
advance request.
• HLAF-Ex the execution internal to a federate of a service request coming from the
Federate Ambassador.

Assume we deal a federation consisting of k federates. The PM(DS(Σ))model will consist of
onesub-model for each of the k federates, and oftwo network models,one for the NS and one for
the ND network.

The single federate sub-model is illustrated in Sect.3.1, and consists of a non-conventional EQN
(Extended Queueing Network) model, that we denote NC_EQN, that includes both conventional
EQN nodes and a number of AND/OR logic gates necessary to bring-in the logic of the HLA
standard. The network model, instead, is a conventional EQN model andillustrated in Sect.3.2, to
be used (with appropriate parameters) for both NS and ND.

3.1 The federation performance model
To answer the Fig.2 question “Exists alternative partitioning?” we shall assume that the LS is
partitioned into a k-federates DS and shall evaluate the PM of such a partitioning.

The NC_EQN model of a k-federates DS is shown in Fig.4, where the details of the PM of only
one Fededate (Fed_i)are illustrated. One may partition the LS code into the k-portions of the DS
code in various ways. As we shall better see in Sect.4, the effect of the partitioningchoice is
reflected in the valuegiven to parameter pSYNC at model parameterization time.

In Fig.4 the interactionsare shown between Fed_i and all remaining federates (in the
publish/subscribe RTI assumption). The set of all remaining federates is denoted by using the
bold Fed_x notation. Therefore, the xi (or ix) notation will be used in the subscript of various
components in Fig.4.For example, gate ANDxi relates to the synch-messages exchanged
between Fed_x and Fed_i. Consequently, we are to figure out number k-1 such AND gates in
the illustration. The same can be said for all otherAND and OR gates with a boldx in the
subscript.

As visible in Fig.4, each Fed_i sends (receives) messages to (from)Fed_xthrough the NS and ND
networks. The entire federation PM will thus consist of a set of Fed_i sub-models (as in Fig.4) that
interact between themselves through the NS and ND nodes as in Fig.5, that shows how messages
from various federates are enqueued in front of NS or ND to be served, i.e. forwarded to the
destination federates.

The Fed_i model in Fig.4 includes:

 a time-consuming node (Fed_i Host CPU), that synthetically represents the host that runs
the federate. Such a node service-time parameters vary with the serviced job class (Ci or
CRC see later).

 a set of non-time consuming nodes, namely:
 AND nodes that perform AND-logic operations.
 OR nodes that perform OR-logic operations.
 SPLIT nodes, that split an incoming job class into two or more outgoing classes.
 Classifier nodes that, basing on the class of the input job, forward the job in one or

the other direction.
 Router nodes that perform probabilistic routing of the incoming jobs.
 aMerge node that merges two job classes.

The computation performed by the federation starts by launching the RTI interface and by
initializing the HLA components local to each federate. Such initial computations are performed

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 88

only once and do not substantially affect the federation execution time and thus are omitted from
the modeling. They are synthetically represented by the INIT job on the top of Fig.4.

The INIT job enters the Split0 node and yields a main thread for each federate belonging to the
Federation. The main thread Ci for Fed_i and its follow-on is detailed in Fig.4.

FIGURE 4: View of the federation PM with details of the i-th federate.

It is assumed that the conservative-time management HLA option is used, in other words, no
federate advances logical time except when it can be guaranteed not to receive any events in its
past. If we also assume zero lookahead (actually HLA does not accept a null value for lookahead
and thus a very small value is given to this parameter) there is guarantee that federates do not
receive events in the past and thus that they are fully synchronized.

FIGURE 5: View of the federation PM including the communication networks.

Split0	

FED_k	
Ck	

DATA	message	from	Fed-x		
through	ND	

Classifier1	 Classifier2	

R3	

R1	

R2	

ANDD
ix	

ANDxi	 Split3	

Fed_i		
Host	CPU	 		SYNCH	message		

to	Fed_x	through	NS	

ANDMTi	

Split2	
Split1	

Sink	

Ci	

CRL	
CDRL	

SYNCH	message	from	Fed-x	through	NS		
RTI-Ack	from	Fed-x	

through	NS		

Ci/CRC	 Ci	

CRC	

Ci	

CHLA	

Ci	

Ci	

CDi	

1-psynch	

psynch	

Ci	 Ci	

Ci	

CDi	

CDRC	

CRC	

CRL		

CRC	

1-psynch	

psynch-	

Ci	

CRC	
1-pquit	

pquit	
End	Sim	Ci	

CRC	

CRC	
CRC	

FED_i	

Ci:	(LEX/HLAR)	

CRC:	(HLAF-Ex)	

CRL	

ORxi	

CDRL	

ANDD
x1	 SplitD4	

CDRC	

CDRL	

Mi	

ORDxi	

DATA	message		
to	FED_x	through	ND	

Ck-1	
FED_k-1	

.	

.	

.	

FED_1	

.	

.	

.	

C1	INIT	

Fed_1	

Fed_k	

Fed_2	

NS	
ND	

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 89

For such choices, the federates will not process events in parallel and parallelism will only be
found when federates include intrinsically parallel portions of LS. If this holds, a positive speedup
will be obtained when transforming the LS into its DS version.

The computation performed by Fed_i is carried out by jobs of various classes that circulate in its
PM, namely:

 Class Ci jobs

 Class C
D

i jobs

 Class CHLA jobs

 Class CRL jobs

 Class C
D

RL jobs

 Class CRC jobs

 Class C
D

RC jobs

The only jobs that consume CPU execution time are Ci and CRC.

The class Ci job

1
simulates the so-called federatemain thread[8], performing LEX and HLAR

computations.

The class CRC job

1
 simulates the so-called federateRTI callback [8],performing HLAR-Ex

computations.

The class C

D
i job is a job derived from Ci and holding the data payload to be forwarded to

Fed_xthrough network ND, when the RTI-Ack arrives from Fed_x(see the AND
D

ix node). A class
CHLAjob is a job derived from Ci and holding the synch-message to be forwarded to Fed_xthrough
network NS. A class CRL job represents the so-called federaterequest listener thread, waiting for
synch-messages from Fed_x(see the ANDxi node). A class C

D
RL job is the federate request

listener thread, waiting for data messages from Fed_xHLAF-Ex computations. A class C
D

RC job
is the federate request callback thread holding the data payload coming from Fed_xand to be
used by the Ci job class.

The main thread Ci enters the Split1 node and yields three outgoing jobs: Ci itself again, CRL and
C

D
RL. The job of class Ci enters the CPU processing queue from Split1and circulates in the

model (in a way that we shall soon illustrate), so iteratively re-entering the CPU processing queue
coming from the ANDMTi node. The job of class CRL, instead, enters the ORxi node and from here
the ANDxi and waits for a synch-message from Fed_xto generate a CRC job, which through the
Split3 produces both a new CRL job (that waits for future synch messages) and the CRC itself again
that enters the CPU processing queue.The same logic applies to the C

D
RL job coming from Split1,

which enters the OR
D

xiand the AND
D

xinodes waiting for a data-message from Fed_x. The C
D

RC
job outgoing Split4does not enter the CPU processing queue directly but merges itself with the Ci
circulating main thread through the merge node Mi. As said above, the Ci job entering the CPU
performs LEX and HLAR computations, while the CRC job performs HLAR-Ex computations.

The job leaving the CPU can be a CRC or a Ci job.

 In case the job leaving the CPU is a CRC job, the Classifier1node forwards it to the router
R3, which sends the job to the ANDMTi node in case thesynchronous HLA service

2
 is

invocated [8].

1
The service time parameters for such a job class (distribution, mean E(tCPU) and variance) can be obtained [11] basing

on the model of the software run by the Fed_i CPU, and on the CPU capacity.
2
In other words, when the federate needs to wait for a RTI callback (CRC), in the case of invocation of a Time Advance

Request Service, or of a Next Message Request Available service.

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 90

Otherwise, the CRC job has no effects and is absorbed by the sink node. If directed to the ANDMTi
node, the CRC job gives consensus to the circulation of the main thread Ci, which thus re-enters
the CPU processing queue.

 In case instead, the job leaving the CPU is a Ci job, the Classifier1directs it to the R1
router, which sends the job to Classifier2if the simulation is not ended (1-pQUIT). Here, if
Ci contains a data-message, a C

D
i job is produced which enters the AND

D
ixnode, and

waits for the RTI-Ack from Fed_xin order to be forwarded to Fed_x through network ND.
If instead, the outcome from Classifier2 is a no-data message Ci this enters the Split2

node and yields a CHLA job (holding a synch-message to be forwarded to Fed_xthrough
network NS) and again a circulating main thread Ci, which (in case a synchronous HLA
service is invocated(pSYNC)) reaches the aforementioned ANDMTi node to iterate the main
thread circulation. In case, instead, of no-synchronous HLA service

3
 (1- pSYNC), the Ci job

does not need the ANDMTi consensus to iterate the main thread circulation, and returns
directly to the CPU processing queue.

In summary, synchronization and data messages that Fed_i exchanges with other
federatesFed_x are enqueued in front of the Fed_i Host CPU to be processed.

Considered that in the publish/subscribe assumption Fed_i interacts with all remaining k-1
federates, the message flow arriving into the queue of the Fed_i Host CPU scales-up with the
dimension k of the federation.

Another element that may increase the message flow into the CPU queue is the use of
lookahead. Indeed, the frequency of the synchronization messages exchanged between
federates per wall clock time-unit may be affected by the value of the lookahead parameter set by
the user.

Such a parameter, however, assumes significant values only in some kind of distributed
simulation models. So, in many cases, the federate PM needs not to model the rise of synch
messages due to lookahead. This is the case of the Fig.4 model, which however can be easily
extended to include lookahead synch messages generators, if needed.

Let us conclude this Section by pointing out that in building the Fed_i model we did not make any

mention of the simulated system This is since the federate model we introduce in the paper is

independent from i.e. it is valid for any In other words, the paper model can be used for any
HLA-based simulation. Only its parameters may depend on Σ, as better seen in Sect.4.

3.2 The network performance model
A further model is necessary to answer the second Fig.2 question of the LS/DS decision
procedure: “Exists alternative NS (or ND)?”. The needed model is the model of the computer
network connecting the federation hosts. By use of such a model, the “Exists alternative NS (or
ND)?”question can be answered by making what-if and sensitivity analysis of the various network
components (LANs, GWs, WAN, etc.) of both NS and ND.

As said above,the entire federation PM consists of a set of Fed_i sub-models (as in Fig.4) and of
the NS and ND network models for communication between federates (as in Fig.5). Such
networks are used in common by all federates and thus synch and data-messages will enqueued

in front of NS and ND as shown in Fig.5. Network NS will thus introduce a NSdelay for the synch-

messages and similarly the NDa NDdelay for the data-messages.

3
In other words, in case of invocation of Send Interaction service.

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 91

In other words, when Fed_i sends a synch-message to Fed_x through NS, the message reaches

Fed_x after a time that can be calculated by evaluating the NSintroduced by NS.

The evaluation of NS requires knowledge of the detailed model of NS (and similarly for ND). The
generic network architecture we shall assume is illustrated in Fig.6 and consists of:

a) A set of LANs (LAN_1, …, LAN_k) where LAN_i is the LAN to which the Fed_i host is
connected.

b) A set of GATEWAYs (GW_1, …, GW_k) where GW_i is the gateway that connects
LAN_ito the WAN.

c) The WAN communication backbone.

Fig.7 gives the EQN performance model of such a network assuming the TCP/IP protocol is
used.

The interaction between the Fed_i Host and the Fed_x Hosts is based on message exchanges
carried out by packet flows over the various components of the network with the WAN being a
X.25 packet switching network. The packet flow involves several technologies: The LAN_1
through LAN_k technologies (e.g.: Ethernet, Token Ring, etc.) the Gateways technology and the
X.25 WAN technology.

FIGURE 6: View of the network architecture.

The communications between Fed_i Host and Fed_x Hosts are based on three basic
mechanisms (m1, m2, m3):

(m1) protocol conversion, from the transport level protocol TCP, to the network level protocol
IP, to the data-link level and physical level protocols (and vice versa), in either direction
from Fed_i Host toFed_x Hosts, with the IP to X.25 protocol conversion (and vice versa) at

the gateway level,
(m2) packet fragmentation and re-assembly at many protocol conversion interfaces,
(m3)window-type flow control procedure operated at transport level by protocol TCP for a
fixed window size of value C (for the sake of simplicity no varying window sizes are
considered, nor the use of congestion-avoidance algorithms).

In the Fed_i-to-Fed_x flow, illustrated in Fig.7, the packets are originated by the Fed_i Host
application level in TCP format and then translated into IP format by the Fed_i Host network level
to enter LAN_i. From LAN_i they exit in LLC/MAC802.5 format to enter the GW_ifragmentation
section (FRAG) that fragments them into X.25 format to be transferred by the transfer section
(TRANS) to the WAN. Vice versa for the GW_x, where X.25 packets are re-assembled by its
reassembly section (REA) into LLC/MAC802.3 format to be forwarded to the LAN_x by the
Transfer section (TRANS).

Fed_1		
Host	

Fed_k-1		
Host	

Fed_k		
Host	

				WAN	

LAN	k-1	

LAN	K	

LAN	1	

Gateway	1	

Gateway	k-1	

Gateway	K	

LAN	i	

Fed_i		
Host	

Gateway	i	

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 92

FIGURE 7: View of the network performance model.

LAN_x transfers such frames to Fed_x Hosts, which in turns re-assembles them into IP packets
and then into TCP frames, in the re-assembly section (REA). The received TCP frames are finally
passed to the application level and are acknowledged by the sending of an ACK packet back to
Fed_i Host, by the acknowledger section (ACK). The token pool [9] is introduced to represent the
window-type flow control procedure implemented by the TCP between the source and the sink
(see later).

In summary, the considered network consists of various subsystems each of different complexity,
each sub-system in turn consisting of various subsystems of various complexities. Each LAN, for
example, is in itself a complex network (not illustrated here), and similarly the WAN.

Producing a model of the network with all details of each LAN, all details of the WAN, etc., could
yield so many components and details to make the model very difficult to handle, and its
evaluation very time-consuming.

In order to obtain a tractable model, a hierarchical hybrid approach [11] can be foreseen.
To this scope, three abstraction levels are introduced:

Level-1 abstraction: At this level the separable sub-systems are identified according to
decomposability theory [10], and studied in isolation. Assume the LANsare separable sub-
systems. In this case they can be preliminarily studied separately from the rest of the network,
then evaluated to obtain their end-to-end delay, and finally substituted in the network model by
equivalent service centers whose service timesare the end-to-end delays obtained above. If
separation is possible, each LAN model (that normally consists of a very large number of service
centers) is collapsed into a single equivalent center. The decomposability conditions for the
LANs, can be verified

4
, and are respected in the considered model.

In conclusion, at this level sub-systems LAN_1, through LAN_kare separately evaluated to obtain
their equivalent end-to-end delay and areeach replaced by a single equivalent center, as
illustrated in Fig.7. The evaluation gives the distributions (e.g.: exponential in the Fig.7 case) of
the LAN equivalent service time and its parameters (mean, variance, etc.), calculated basing on
the model of the software run by the LAN and the capacity of the hardware [11].

4
Generally speaking, the decomposability condition holds when the events that are injected from the external systems into

the separable sub-system (i.e. from Fed_i Host into LAN_i and from GW_x into LAN_x) are very rare with respect to the
events that take place internally to the sub-system. This can be also empirically verified by comparing the average
service rates of the external systems with the ones internal to the LANs. In the specific case, the formers are orders of
magnitude smaller than the latters.

Fed_i	Host	

Fed_x	Hosts	

Packet	source	

Packet	sink	

(Layer	6	and	5	func ons)	

(Layer	6	and	5	func ons)	

(Layer	4	and	3	func ons)	

(Layer	4	and	3	func ons)	

LAN_x	

LAN_i	

(Layer	2	and	1	funct.)	

(Layer	2	and	1	funct.)	

Exp	

Exp	

GW_i	

GW_x	

FRAG	 TRANS	

REA	 ACK	REA	 TRANS	

.	

.	

.	.	

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 93

Note that the evaluation of the equivalent service time of each LAN may take into consideration
the fact that there might exist many Hosts on the some LAN and that some of them might not be
part of the federation.

To complete Level-1 network model the GW_i, the GW_x, the WAN and the Hosts are also to be
modeled.

The GW_i can be shown to consist of two stages (of Erl-5 and Cox-2 distribution, as in the
illustration), with parameters (mean, variance, etc.) again calculated basing on the model of the
software run by the gateway and its hardware capacity [11]. A similar work is done for GW_x,
which is shown to consist of two stages (Exp and Erl-5) and relating parameters. As far as the
WAN is concerned, this can be shown to be globally modeled by an Exp multi-server center, as
illustrated in Fig.7 and relating parameter.

Finally, the two Hosts are modeled as being each divided into two sections to represent the
division of work between the Layer 6 and 5 OSI protocol functions and the Layer 4 and 3
functions.

Level-2 abstraction: At this level, the window-type flow control procedure operated at transport
level by the TCP protocol is modeled on the simplified network obtained at Level.1.

In order to represent such a flow control between the exit of the first section of Fed_i Host and the
entrance of the first section of Fed_x Hosts, the so-called passive queue [9] is used, consisting of
a token pool with the GET and RELEASE nodes. For a window size C, the pool consists of C
tokens, and so up to C consecutive TCP frames can get a token at the GET node and be
admitted. Non-admitted packets are enqueued in front of the GET node. On the other hand, each
leaving packet releases its token at the RELEASE node, thus allowing another packet to enter.
When data transfer takes place in the opposite direction, the GET node with its queue takes the
place of the RELEASE node, and vice versa.

The Level-2 model is however still too complex to be evaluated in closed form, and thus its
evaluation is made by simulation. The evaluation will yield the acknowledgement throughput [11]
(or number of returned ACKs per time unit), denoted as γ(C-n), where C is the chosen window
size, n the number of acknowledged packets and (C-n) the number of still unacknowledged ones
in the network.

Level-3 abstraction: At this level the entire network NS (or ND) is replaced by a single equivalent
center (see Fig.8) whose service rate is the ACK throughput γ (C-n) calculated at abstraction
level 2. In other words, the entire network NS (or ND) is now seen as a single server system with
arrival rate λ (the packets arrival rate from the user application in Fed_i Host) and mean service
timeparameters of value E(tS) depending on the γ (C-n) throughput [11], namely:

 (2)

with i the number of packets in the queue, including the server. Such a model is of the M/M/1 type
with state-dependent service time(i.e. dependent on the number n of packets in the center), which

can be evaluated according to standardprocedures
5
[9]. Its response time gives the network NS

5The Poisson assumption (M) for the arrival process of mean λ is a reasonable assumption for the packets flow from the
client user application. The exponential assumption (M) for the network service time is a pessimistic assumption that
introduces a security factor, which can however be replaced by a general service time assumption (G) by introducing the
coxian approximation.

E(ts) =

1
g(i)

, 0 £ i £C

1
g(C)

, i >C

ì

í
ï

î
ï

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 94

(or ND) delayto be used for NS (or ND) in the Fig.5 PM (in other words, the NS or ND equivalent
service times to be used in the federation PM).

FIGURE 8:Synthetic model of NS (or ND)

As said at the beginning of this Section, by use of the NS (or ND) network model, what-if and
sensitivity analysis can be performed of various network components (LANs, GWs, WAN, etc.) or
of various functions (window size C) to answer the Fig.2 question “exists alternative NS (or ND)?”
of the LS/DS decision procedure.

5. The OMNet++ version of the PM(DS(Σ)) and model parameterization
To perform an example prediction of the DS(Σ) execution time (TDS) to be used in the Fig.2
decision procedure, we developed the OMNet++ simulation version of the Fig.5 model for a k=2
federates case (Fed_1 and Fed_2). Only the Fed_1 part (Fig.4) and the NS and NDnodes are
shown in Fig.9. As said above, the model structure is valid for any system Σ and only its
parameters, illustrated in Tab.1, (i.e., the CPU service time, the ND and NS service times, the pQUIT
and pSYNC routing probabilities) may change with Σ.

FIGURE9: OMNet++ simulation version of the PM(DS(Σ)) Fed_i.

The derived parameters for a Σ example case [12]are illustrated in Tab.1.

TABLE 1: Model parameters for a two-federate DS.

Network	service	 me	
E(ts)	

Network		equivalent	
service	center	

l

i	

Network	response	 me	(DNS	or	DND)			

ND	

NS	

 Distribution

Parameters

Fed_i Host CPU service time tCPU

(i=1, 2)

positive truncated-Normal

E(tCPU) = 10ms (Scen.A)

E(tCPU) = 500ms (Scen.B)

2(tCPU) = 1

NS, NDservice time tS k-Pareto, k =4 E(tS) = 21ms

Routing parameters

pQUIT 0,001 (Fed_1);

0,001(Fed_2)

pSYNC 0,82 (Fed_1);
0,74 (Fed_2)

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 95

As can be seen from the table, there exist three types of parameters: the Fed_i Host CPU
parameters, the NSand NDparameters and the routing parameters (pQUIT and pSYNC).

The Fed_i Host CPU service time parameters vary with the job class (Ci or CRC) and are derived
fromthe CPU capacity and the Fed_i software run by the CPU, as seen in Sect.3.1. For the sake
of simplicity, in this example a common mean E(tCPU) of10msor 500ms (for Scenarios A and B
respectively, see later) is chosen for both classes.

The parameters for the ND and NS networks are instead derived from the software run by the
network components and their capacity, as seen in Sect.3.2.

The routing parameters pQUIT and pSYNC, finally, can be derived from measurements on LS(Σ), in
particular, by counting the number of events nintEvents, ndisEvents, ndisToIntEvents which respectively
denote the number of local events (internal events), the number of events sent from a potential
Fed_1 to a potential Fed_2, and the number of events received from a potentialFed_2. Such
counting can be easily performed collecting the number of LS events in a simulation experiment
for a given hypothetical LS partitioning into two federates. Indeed, it is possible to be convinced
[12] that under the conservative time-management assumption, one may write:

pQUIT = 1/ ncycles, (3)

where ncycles is the number of local-HLA processing cycles. Value ncycles can be estimated by the
number of events locally processed within the model partition. More specifically,

ncycles = nIntEvents+ ndisToIntEvents (4)

Similarly, under the same assumption, one may write:

pSYNC = nIntEvents/ (nIntEvents+ndisEvents) (5)

Basing on the Fed_i Host CPU parameters, the NS and ND parameters and the routing
parameters, the OMNet++ code simulation model has been run to obtain the T’’DSpredictions
shown in Tab.2. This was carried-out [13,14] in two scenarios A and B: Scenario A being one in
which the fraction Q of inherently serial computation was high and Scenario B in which Q was
low.

The first column in Tab.2 reports the local simulator execution time TLS. The second column
reports the distributed simulator execution time T’’DS predicted by OMNet++ simulator of the PM,
and the third column the times of the real distributed simulator DS (that was implemented in
Java+HLA). Such a column thus provides a validation of the PM results, and shows how the
predicted results adequately match the real ones. Note that in Scenario B the execution times
are in minutes while in Scenario A they are in seconds. This is since Scenario B is built in a way
to yield a high computation-to-communication ratio. In other words, a large amount of
computation between communications.

 TABLE 2: Execution-time results.

Tab.2 also shows how in the Scenario B the distributed simulator outperforms the local one.
Indeed, in such a Scenario the DS execution time (T’’DS) is much lower than the LS time (TLS).

 TLS PM results

(OMNet++ predictions)

PM validation

(real DS measurements)

A (high Q) 0.7s T’’DS = 8.3s T’’DS = 8.2s

B (low Q) 33 min T’’DS = 12.5 min T’’DS = 12.0 min

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 96

Finally by using the expression S’’ = TLS/T’’DS, the results in Tab.2 were used to obtain the
speedup results shown in Tab.3.

TABLE 3: Speedup results.

This table shows that a quite good speedup (S’’ =2.64) is obtained in the B Scenario. In other
words, in this case the run-time gain obtained by the parallel execution on two hosts
compensates for the data and synch communication overheads. In the scenario A, instead, the
parallelism does not yield a sufficient run-time gain to compensate for the overheads, and the
resulting speedup (S=0.08) is practically irrelevant.

The Tab.2 and 3 results are used by the decision procedure of Fig.2 to decide at design-time
whether to remain on the LS version of the simulator or implement its DS version. In case the
T’’DS execution time are not considered “ok” (see Fig.2), one may either try a new tentative
partitioning (to modify the pSYNC parameters, see Sect.3.1) or try alternative networks NS and ND
of improved capabilities (to modify the E(tS) parameters, see Sect.3.2). In case no partitioning nor
network improvements can be found, one may decide not to implement the DS(Σ).

6. CONCLUSION
The execution time of a Distributed Simulator (DS) depends on 3 interacting factors: the speedup,
the synch-communication overhead and the data-communication overhead, due to network
delays.
The combination of such 3 factors makes it very hard to predict the advantage of transforming a
local version of the simulator (LS) into a distributed version (DS).

A LS/DS decision procedure has been proposed to decide at design-time whether to remain on
the LS version of the simulator or carry out the implementation of its DS version. The procedure
is guided by a performance model (PM) of the DS. The PM assumes the DS is based on the HLA
protocol standard and middleware. The model can be used both to support the LS/DS decision
process and to evaluate the representativeness of the DS(Σ) at design-time.

ACKNOWLEDGMENTS
Work partially supported by funds from the FIRB project on “Software frameworks and
technologies for distributed simulation”, from the FIRB project on “Performance evaluation of
complex systems”, from the University of Rome TorVergata research on “Performance modeling
of service-oriented architectures” and from the CERTIA Research Center.

REFERENCES
[1] D. Gianni, A. D’Ambrogioand G. Iazeolla. “A Layered Architecture for the Model-driven
Development of Distributed Simulators”, Proceedings of the First International Conference on
Simulation Tools (SIMUTOOLS’08), Marseille, France, pp. 1-9, 2008.

[2] A. D’Ambrogio, D. Gianni, G. Iazeolla: “A Software Architecture to ease the development of
Distributed Simulation Systems”, Simulation-Transaction of the Society for Modeling and
Simulation International, Vol. 87, n.9, pp. 819-836, 2011.

[3] IEEE Std 1516. “IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) frameworks and rules”, 2000.

 PM results

A: High Q S = 0.08

B: low Q S = 2.64

Alessandra Pieroni & Giuseppe Iazeolla

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012 97

[4] R.M. Fujimoto. “Parallel and Distributed Simulation Systems”, John Wiley & Sons 1999.

[5] A. Park. “Parallel Discrete Event Simulation”, College of Computing. vol. PhD: Georgia
Institute of Technology, 2008

[6] OMNeT++ Discrete event simulation v.4.0. User Manual, http://www.omnetpp.org.

[7] Pitch. The Certified Runtime Infrastructure for HLA 1516 – User’s guide. http://www.pitch.se,
2005.

[8] F. Kuhl, R. Weatherly, J. Dahmann. “Creating Computer Simulation Systems”, Prentice-Hall,
1999.

[9] S.S. Lavenberg. “Computer Performance Modeling Handbook”, Academic Press, New York,
1983.

[10] P.J. Courtois. “Decomposability: Queueing and Computer System and Applications”,
Academic Press, 1997.

[11] A. D’Ambrogio, G. Iazeolla. “Steps towards the Automatic Production of Performance Models
of Web-Applications”, Computer Networks, n.41, pp 29-39, Elsevier Science, 2003.

[12] D. Gianni, G. Iazeolla, A. D’Ambrogio. “A methodology to predict the performance of
distributed simulation”, PADS10 the 24th ACM/IEEE/SCS Workshop on Principles of Advanced
and distributed simulation Atlanta May 17-19, 2010.

[13] G. Iazeolla, A. Gentili, F. Ceracchi. “Performance prediction of distributed simulations”,
Technical Report RI.02.10, Software Engineering Lab, Dept. Computer Science, University of
Roma TorVergata , 2010.

[14] G. Iazeolla, M. Piccari. “The Speedup in distributed simulation”, Technical Report RI.03.10,
Software Engineering Lab, Dept. Computer Science, University of Roma TorVergata, 2010.

[15] L. Chu-Cheow,L. Yoke-Hean, et al. “Performance prediction tools for parallel discrete-event
simulation”, Proceedings of the thirteenth workshop on Parallel and distributed simulation Atlanta,
Georgia, United States: IEEE Computer Society, 1999.

[16] J. Liu, D. Nicol, et al. “A Performance prediction of a parallel simulator”, Proceedings of the
thirteenth workshop on Parallel and distributed simulation Atlanta, Georgia, United States: IEEE
Computer Society, 1999.

[17] R. Ewald,D. Chen, et al. “Performance Analysis of Shared Data Access Algorithms for
Distributed Simulation of Multi-Agent Systems”, Proceedings of the 20th Workshop on Principles
of Advanced and Distributed Simulation: IEEE Computer Society, 2006.

[18] R. Ewald, J. Himmelspach, et al. “A Simulation Approach to Facilitate Parallel and Distributed
Discrete-Event Simulator Development”, Proceedings of the 10th IEEE international symposium
on Distributed Simulation and Real-Time Applications: IEEE Computer Society, 2006.

[19] K. S. Perumalla, R.M. Fujimoto, et al. “Performance prediction of large-scale parallel discrete
event models of physical systems”, Proceedings of the 37th conference on Winter Simulation
Orlando, Florida: Winter Simulation Conference, 2005.

[20] P. Teo, S. J. Turner, Z. Juhasz. “Optimistic Protocol Analysis in a Performance Analyzer and
Prediction Tool”, PADS '05 - Proceedings of the 19th Workshop on Principles of Advanced and
Distributed Simulation Pages 49 – 58, 2005.

http://www.omnetpp.org/

