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Abstract 

 
This paper proposes an algorithm to evaluate the probability that d units of data can be sent from the 
source node to the sink node through a valid group of paths on a network. The conditions of transmission 
are such that the transmission time of each path belonging to this valid group of paths does not exceed 
the specified upper bound T, and that the maximal capacity of that path is not less than the specified 
lower bound Cs (the required system capacity). Such a probability, which is called the system reliability, is 
denoted by R(d,Cs,T). Based on minimal paths, the algorithm generates all the lower boundary points for 
(d,Cs,T), and the system reliability can then be calculated in terms of all the lower boundary points for 
(d,Cs,T) by applying the inclusion-exclusion rule. 
 
Keywords: Time and capacity constraints, minimal path, stochastic-flow network, system reliability. 

 
 

1. INTRODUCTION 
The system reliability of a flow network Rd is the probability that the maximum flow of the network is not 
less than a given demand d (which is known as a single commodity). For the case when each arc has 
several capacities and may fail, [1] presented an algorithm to evaluate Rd in terms of minimal pathsets. In 
[2], Lin presents an algorithm to evaluate Rd for the case when both the arc and the node have several 
capacities and may fail. A flow network with two commodities has been studied in [3]. 
 
The system reliability of a flow network R(d,C) is defined as the probability that d units of flow can be 
transmitted from the source node to the sink node, such that the total transmission cost is less than or 
equal to C; this can be computed in terms of minimal path vectors to level (d,C) (named (d,C)-MPs). In 
[4], Lin presented an algorithm to generate all (d,C)-MPs of such a system for each level (d,C) in terms of 
minimal path sets, considering the fact that each arc has several capacities and may fail. For the case 
when each node and arc having a designated capacity has a different lower level owing to various partial 
and complete failures, Lin [5] proposed an efficient algorithm, based on minimal paths, that generates all 
lower boundary points for (d,C). The system reliability can then be calculated in terms of all lower 
boundary points for (d,C) by applying the inclusion-exclusion rule. The system reliability R(d,C) of a 
multicommodity flow network has been studied in [6] and [7]. 
 
The system reliability of a flow network R(d,T) is defined as the probability that d units of data can be sent 
from the source to the sink through a stochastic-flow network within T units of time. Based on minimal 
paths, Lin presented an algorithm to calculate R(d,T) [8].  
 
The idea of considering path capacity and the required system capacity Cs in the reliability evaluation is 
referred to in [9]. The authors stated that a system is good if and only if it is possible to successfully 
transmit the required capacity from the source node to the sink node.  
 
In this paper, we will extend the idea of using Cs to a flow network. We suppose that the system has a 
limited capacity value Cs, and we want to send d units of data within T units of time. Thus, we have a new 
measure of the system reliability of a flow network denoted by R(d,Cs,T). This new measure is defined as 
the probability that d units of data can be sent from the source node to the sink node through a valid 
group of paths on the network within the transmission time (T) under the required system capacity (Cs) 
constraints.  
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2. NOTATIONS and ASSUMPTIONS 
2.1 Notations 

G(A, N, C) A stochastic-flow network with a set of arcs A = }ni1a{ i ≤≤ , a set of nodes N, and 

}C,...,C,C{C n21= with Ci (an integer) being the maximum capacity of each arc ia .   

X Capacity vector; X = (x1, x2, …, xn). 
MPs Minimal paths. 
mpj Minimal path no. j; j = 1, 2,…, m. 
li The lead time of arc ai. 
Cs The required system capacity. 
R(d,Cs,T)  The system reliability for a given demand d under the constraints of T and Cs. 
 
2.2 Assumptions 

1- The capacity of each component ia  is an integer-valued random variable that takes values 

i
M...210 <<<<  according to a given distribution. 

2- The flow in G must satisfy the so-called flow-conservation law.  
3- The capacities of different components are statistically independent. 

 

3.  AN ALGORITHM for COMPUTING R(d,Cs,T) 

 

3.1 Definition of lower boundary points for (d,Cs,T). 
If X is a minimal capacity vector such that the network can send d units of data from the source to the sink 
within T units of time under a system capacity Cs, then X is a lower boundary point for (d,Cs,T).  

 

3.2 Generate all Lower Boundary Points for (d,Cs,T). 
 
In the following steps, for each minimal path mpj = {aj1, aj2,…, ajn}, we show how to find the minimal 

capacity vector jX  = (x1, x2,…, xi,…, xn) such that the network sends d units of data within T units of time 
under a maximum system capacity Cs. 

 

1. For all mpj, examine the path capacities Cmpj as 
Cmpj = min{Ci|ai∈mpj}, j = 1, 2,…, m.        …(1) 

2. For all mpj, calculate the transmission time of the path Tj as 

 s

n

1i

jij C/d}mpa|{T +∈=∑
=

i
l        …(2) 

3. Determine the valid group paths, Vmp = {mpj| Cmpj ≥  Cs and Tj ≤  T, j = 1, 2,…, m}. 

4. Generate the system capacity vector jX  = (x1, x2,…, xi,…, xn) for each mpj that belongs to Vmp as 
follows: 



 ∈

=

otherwise0

mpaifC
x

jis
i            …(3) 

where xi is an element of X
j
. 

Lemma 1. If X is a lower boundary point for (d,Cs,T), then the system capacity under X is greater than or 
equal to Cs, and the minimum transmission time under X is less than T.   
 
Lemma 2. The set generated by the algorithm 3.2—X

1
, X

2
,…, X

q
—is the set of lower boundary points for 

(d,Cs,T). 
 
3.3 Evaluate R(d,Cs,T) 
 
If X

1
, X

2
,…, X

q
 are the collection of all (d,Cs,T)-mp, then the system reliability Rd,Cs,T is defined by   

                                }}XYY{Pr{R iq

1i
)T,Cs,d( ≥=

=
U                                       …(4) 

where }yPr{...}yPr{}yPr{}YPr{ n21 ⋅⋅⋅= . We will use the inclusion-execlusion rule presented in [10] 

to calculate Rd,Cs,T as follows: 



M. R. Hassan 

 

International Journal of Computer Networks (IJCN), Volume (4) : Issue (4) : 2012          100 

 

If }XYY{A...,},XYY{A},XYY{A q

q

2

2

1

1 ≥=≥=≥= , then apply the inclusion-exclusion rule to 

calculate Rd,Cs,T using the following relationship: 

}A...AAPr{)1(

...}AAAPr{}AAPr{}APr{R

q21
1q

kji

kji

ji

ji

i

i)T,Cs,d(

∩∩∩−+

+−∩∩+∩−=

−

≠≠≠

∑∑∑
          …(5) 

 

4.  AN ILLUSTRATIVE EXAMPLE 
 
Here, we use the network in Fig. 1 that was studied in [8]. This network has five nodes and eight arcs, 
which are numbered from a1 to a8. The capacity and lead time of each arc are shown in Table 1.    
 
 
 
 
 
 
 
 
 

 
 

FIGURE 1: Computer network 

 
There are six minimal paths: mp1 = {a1,a2}, mp2 = {a1,a5,a8}, mp3 = {a1,a2,a6}, mp4 = {a1,a2,a7,a8}, mp5 = 
{a3,a6}, and mp6 = {a3,a7,a8}. Given d = 8 and T = 9, Tables 2, 3, and 4 summarize the values of Cmpj and 
Tj for each path mpj for the different values of Cs, using the algorithm 3.2. Also, below each table we show 
the value of Vmp and the corresponding X vectors, as well as the system reliability Rd,Cs,T. 

 
 

Arc Capacity Probability Lead 
time 

Arc Capacity Probability Lead 
time 

a1 

3 
2 
1 
0 

0.80 
0.10 
0.05 
0.05 

2 a6 

4 
3 
2 
1 
0 

0.60 
0.20 
0.10 
0.05 
0.05 

2 

a2 
2 
1 
0 

0.80 
0.10 
0.05 
0.05 

1 

a7 

5 
4 
3 
2 
1 
0 

0.55 
0.10 
0.10 
0.10 
0.10 
0.05 

2 
 

a3 
1 
0 

0.85 
0.10 
0.05 

3 

a4 
1 
0 

0.90 
0.10 

3 
a8 

3 
2 
1 
0 

0.80 
0.10 
0.05 
0.05 

1 

a5 
1 
0 

0.90 
0.10 

1 

 
Table 1: Arc data for Fig. 1 
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a4 
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mpj Cmpj Transmission 
Time Tj 

mpj Cmpj Transmission 
Time Tj 

mp1 1 13 mp4 3 14 

mp2 1 12 mp5 2 13 

mp3 3 13 mp6 2 14 

 
Table 2: Values of Cmpj and Tj when Cs = 1 

 
 
According to Table 2, there is no path satisfies constraints of T and Cs. So, Vmp = Φ , i.e., the X

1
, X

2
,…, 

X
6
, does not exist. Therefore, R(8,1,9) = 0. 

 

mpj Cmpj Transmission 
Time Tj 

mpj Cmpj Transmission 
Time Tj 

mp1 1 9 mp4 3 10 

mp2 1 8 mp5 2 9 

mp3 3 9 mp6 2 10 

 
Table 3: Values of Cmpj and Tj when Cs = 2 

 
According to Table 3, Vmp = {mp3,mp5} because Cmp3 is greater than Cs and Cmp5 is equal to Cs. 
Furthermore, both T3 and T5 are equal to T. Thus, we have X

3
 = (2 2 0 0 0 2 0 0) and  

X
5
 = (0 0 2 0 0 2 0 0). Let }XYY{Aand}XYY{A 5

5
3

3 ≥=≥=  . Then, the system reliability 

== }AAPr{R 53)9,2,8( U  0.89145, using the inclusion-exclusion rule, where 

 

729.01190.011190.090.0

}0xPr{}0xPr{}2xPr{}0xPr{}0xPr{}0xPr{}2xPr{}2xPr{

)}(YPr{}APr{

87654321

3

=×××××××=

≥×≥×≥×≥×≥×≥×≥×≥=

≥= 0 0 2 0 0 0 2 2

855.01190.01195.011

}0xPr{}0xPr{}2xPr{}0xPr{}0xPr{}2xPr{}0xPr{}0xPr{

)}(YPr{}APr{

87654321

5

=×××××××=

≥×≥×≥×≥×≥×≥×≥×≥=

≥= 0 0 2 0 0 2 0 0

 

69255.01190.01195.090.090.0

}0xPr{}0xPr{}2xPr{}0xPr{}0xPr{}2xPr{}2xPr{}2xPr{

)}(YPr{}AAPr{

87654321

53

=×××××××=

≥×≥×≥×≥×≥×≥×≥×≥=

≥= 0 0 2 0 0 2 2 2I

 

 

mpj Cmpj Transmission 
Time Tj 

mpj Cmpj Transmission 
Time Tj 

mp1 1 8 mp4 3 9 

mp2 1 7 mp5 2 8 

mp3 3 8 mp6 2 9 

 
Table 4: Values of Cmpj and Tj when Cs = 3 

 
It is clear that Vmp = {mp3,mp4} because both Cmp3 and Cmp4 are equal to Cs. Also, T3 is less than T and T4 
is equal to T.  
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Then, we have X
3
 = (3 3 0 0 0 3 0 0) and X

4
 = (3 3 0 0 0 0 3 3). Let }XYY{Aand}XYY{A 4

4
3

3 ≥=≥=  . 

Then, the system reliability is == }AAPr{R 43)9,3,8( U  0.5888, using the inclusion-exclusion rule, where 

512.01180.011180.080.0

}0xPr{}0xPr{}3xPr{}0xPr{}0xPr{}0xPr{}3xPr{}3xPr{

)}(YPr{}APr{

87654321

3

=×××××××=

≥×≥×≥×≥×≥×≥×≥×≥=

≥= 0 0 3 0 0 0 3 3

384.080.075.0111180.080.0

}3xPr{}3xPr{}0xPr{}0xPr{}0xPr{}0xPr{}3xPr{}3xPr{

)}(YPr{}APr{

87654321

4

=×××××××=

≥×≥×≥×≥×≥×≥×≥×≥=

≥= 3 3 0 0 0 0 3 3

 

3072.080.075.080.011180.080.0

}3xPr{}3xPr{}3xPr{}0xPr{}0xPr{}0xPr{}3xPr{}3xPr{

)}(YPr{}AAPr{

87654321

43

=×××××××=

≥×≥×≥×≥×≥×≥×≥×≥=

≥= 3 3 3 0 0 0 3 3I

 

 
 

5. DISCUSSION 
 
Algorithm 3.2 needs O(mn) time to generate all lower boundary points for (d,Cs,T) in the worst case, 
where n is the number of arcs and m is the number of minimal paths. Algorithm 3.3 needs O(m

2
n) time to 

evaluate the system reliability in the worst case [8], using the inclusion-exclusion rule. Therefore, the total 
time needed by the algorithm is O(mn) + O(m

2
n) to calculate the system reliablity R(d,Cs,T) in the worst 

case. In comparison with the algorithm presented in [8] to evaluate reliability under the constraint T, the 
presented algorithm in this paper needs the same time (O(mn) + O(m

2
n)) to evaluate reliability under CS 

and T constraints.  
 

6. CONCLUSIONS and FUTURE WORK  
  A new definition of the system reliability of a flow network to a given demand d has been presented, 
which takes into account both the required system capacity (Cs) and the transmission time (T). In 
addition, an algorithm has been presented for the calculation of R(d,Cs,T). The algorithm is based on the 
use of minimal paths to generate all lower boundary points for (d,Cs,T), and to then calculate the system 
reliability R(d,Cs,T) using the inclusion-exclusion rule. 

 Finally, we have illustrated the use of the proposed algorithm by calculating the reliability of a flow 
network for a given network taken from the literature.  

The algorithm has proved to be efficient and may be used to compute the system reliability of a 
multicommodity flow network. 
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