
Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 41

Designing A Rule Based Stemming Algorithm for Kambaata
Language Text

Jonathan Samuel jimmyelove@gmail.com
Telecom Excellence Academy/ Digital Learning
Ethio Telecom
Addis Ababa, Ethiopia

Solomon Teferra solomon.teferra@aau.edu.et
Faculty of Informatics/ School of Information Science
Addis Ababa University
Addis Ababa, Ethiopia

Abstract

Stemming is the process of reducing inflectional and derivational variants of a word to its stem. It
has substantial importance in several natural language processing applications. In this research,
a rule based stemming algorithm that conflates Kambaata word variants has been designed for
the first time. The algorithm is a single pass, context-sensitive, and longest-matching designed by
adapting rule-based stemming approach. Several studies agree that Kambaata is strictly suffixing
language with a rich morphology and word formations mostly relying on suffixation; even though
its word formation involves infixation, compounding, blending and reduplication as well.

The output of this study is a context-sensitive, longest-match stemming algorithm for Kambaata
words. To evaluate the stemmer’s effectiveness, error counting method was applied. A test set of
2425 distinct words was used to evaluate the stemmer. The output from the stemmer indicates
that out of 2425 words, 2349 words (96.87%) were stemmed correctly, 63 words (2.60%) were
over stemmed and 13 words (0.54%) were under stemmed. What is more, a dictionary reduction
of 65.86% has also been achieved during evaluation.

The main factor for errors in stemming Kambaata words is the language’s rich and complex
morphology. Hence several errors can be corrected by exploring more rules. However, it is
difficult to avoid the errors completely due to complex morphology that makes use of
concatenated suffixes, irregularities through infixation, compounding, blending, and reduplication
of affixes.

Keywords: Kambaata Stemmer, Rule-based Stemmer, Stemming Algorithm, Kambaata

Language, Information Retrieval.

1. INTRODUCTION

Stemming algorithms are automated programs to reduce all terms with the same root to a
common form by eliminating the words' morphological affixes [1]. In today’s world, stemmers are
commonly applied in different natural language processing applications such as information
retrieval, text classification, text summarization, morphological analyzer and automatic machine
translation [2]. Therefore, designing a stemming algorithm for Kambaata language has a huge
benefit in the development of various natural language processing applications.

Different forms of the same word can be created in Kambaata without changing the word’s part of
speech through inflectional morphology. These variations are outcomes of changes in person,
number, tense and gender [3]. As stated in [4], these kinds of variations do not alter the word’s
original class.

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 42

An example of a stem can be the word “mar” (go - 2male) which is the stem for the variants
“marro” (goes - 3male), “marree(u)” (went - 3male), “marimba’a” (didn’t go - 3male), “marano” (will
go - 3male), “marayyoo(u)” (is going - 3male), and “marota” (to go - 1sg/3male).

Another technique for word formation in Kambaata is using derivational morphology which results
in change of the word’s part of speech [4]. For instance, affix changes a word from adjective to
nouns, from verb to nouns, from noun to verbs, and so on. For example, “jaalu” (friend - noun),
“jaalloomaan” (friendly - adjective), and “jaalloomata” (friendship - noun).

Kambaata language has very complex morphology [5]. According Treis [6], Kambaata does not
make use of prefixes for word formation. Nevertheless, complicated word forms can be created
by suffixation, infixation, compounding, blending and reduplication, specifically by full
reduplication or by reduplication of portion of the word in Kambaata [5]. The reduplicated section
of the syllable is prefixed in Kambaata [5].

Several studies agree that Kambaata is a strictly suffixing language with a rich morphology and
complex word formations mostly relying on suffixation; even though its word formation involves
infixation, compounding, blending and reduplication as well [5], [6].

This paper describes the design and evaluation of the first rule based, longest match and context
sensitive stemmer developed for Kambaata language.

2. LITERATURE REVIEW AND RELATED WORKS
The concepts of conflation techniques, stemming algorithms and stemmer evaluation methods
are the basic components in stemming researches.

2.1 Word Conflation
Word conflation is a method of matching semantically related words with different morphological
variations [7]. It is performed either manually or automatically by means of software programs [8].
Automated word conflation is carried out through computer programs known as stemmers and
those programs eliminate the affixes from words to form their corresponding stems [1].

2.2 Stemming Algorithms
Stemming algorithms are classified as rule-based, table lookup, successor variety, and n-gram
based on their strategy of word stemming [7].

Search query words must match the terms in databases or documents for effective retrieval of the
required information [9]. There must be a mechanism decide whether the given query word
matches the word in the document or not. The straightforward technique is to allow exact
matching only; for instance, “stem” would match itself only and a document that contained “stem”
but “Stem” would not be recognized as a match.

The properties of stemming algorithms differ depending on whether stem dictionary and suffix
lists are being utilized, and also on the purpose for which the stemmer is designed [1], [8].
However, most of stemmers are based on specific rules and techniques [10]. These techniques
include removal of a single longest matching suffix or the iterative elimination of numerous simple
base suffixes. The motive behind iterative strategy is the fact that suffixes are affixed to stems
one after the other in concatenation. In the iterative approach, suffixes are removed from the
word in the order of their derivational rules. The suffix removal begins from the end of the word
performing in the direction of the word starting. The longest match strategy removes the
lengthiest suffix possible at one time using single pass approach [4].

Stemmers can also be classified as context-free and context-sensitive stemmers [2]. In context-
free stemming algorithms, any restriction is not applied on the stem and therefore no extra
procedures are required to examine exceptional scenarios. Context sensitive rules identify certain

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 43

conditions by which each suffix could be removed from the word to be stemmed [4]. Studies
recommended that better output can be attained by incorporating restrictions to stripping
procedures while applying context-sensitive conditions [3], [11].

2.3 Evaluation Methods for Stemmers
The most popular performance analysis techniques to measure the accuracy of stemmers are the
manual, vocabulary reduction and Paice’s methods [12], [13]. In the manual evaluation technique,
it is an individual that makes the decision whether the stem is correct or not for each word
stemmed. We have three evaluation parameters in this approach: the number of correctly
stemmed words, the number of over stemmed words, and the number of under stemmed words
[14]. The word compression is also another mechanism to measure stemmer’s effectiveness in
terms of reducing duplicate words having same root.

Stemmers are also evaluated using Paice’s method [14]. In this technique, measures of under
stemming and over stemming decide the level of the stemmer’s effectiveness beyond retrieval
context. In this method, three measurements are applied to make a qualitative contrast among
various stemmers: the over stemming index (OI), the under stemming index (UI), and the
stemming weight (SW). The strategy requires a word sampling, without any repetitions, divided
into conceptual groups where terms are semantically and morphologically associated. The SW is
provided by the ratio OI/UI [14].

2.4 Related Works
Stemming researches have been conducted to several languages both internationally and in the
local context. Locally, stemming algorithm design and development has been attempted for
Amharic, Afaan Oromo, Tigrigna, Wolaytta, Silt’e and few others. However, there is no any
research carried out to explore stemming technique for Kambaata words and there has never
been any attempt done to design a rule-based stemmer for Kambaata language text. Thus, this
research is the first of its kind to explore stemming method and for designing an algorithm for
stemming Kambaata words.

Lovins Stemmer
Lovins Stemmer is the first popular and effective stemmer which was proposed in 1968 by Julie
Beth Lovins [1]. This stemmer performs a lookup on a table of 294 endings, 29 conditions and 35
transformation rules. The stemmer is a context-sensitive and works on a longest match first
principle. A word is stemmed if an ending with a satisfying condition is found. A suitable
transformation rule is applied next, its aim being to deal with doubled consonants and irregular
plurals. Even if the recoding could make the stemming process fast, the output might not be
necessarily accurate.

Dawson Stemmer
Dawson stemmer is an extended version of the Lovins stemmer except that it covers a much
more comprehensive list of about 1200 suffixes [15]. Similar to that of Lovins’ stemmer, the
stemmer is a single pass and hence it is very fast. The suffixes are stored and arranged in the
reverse order indexed by their length and last letter. Dawson did not use recoding technique in
this algorithm instead used an extension of the partial matching procedure.

Dawson stemmer covers more suffixes compared to Lovins stemmer. It also performs faster than
Lovins stemmer. However, the weaknesses of Dawson stemmer are its complexity and lack of
standard reusable implementation [16].

Porter Stemmer
The Porter stemmer is one of the most popular stemmers today, which is proposed in 1980 [3].
Since then, the original Porter stemming algorithm have been changed and improved multiple
times [17]. The stemmer is based on the idea that the suffixes in the English language are mostly
made up of a combination of simpler suffixes. The stemmer has five steps; and within each step,
rules are applied until one of them passes the conditions. If a rule is accepted and meets the

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 44

condition, the suffix is removed accordingly, and the next step is performed. This process
continues for all five classes sequentially, the resultant stem being returned by the stemmer after
control has been passed from final class, step five.

Porter’s algorithm uses a dictionary of about 60 suffixes and has only few context-sensitive and
recoding rules, and therefore is economical in storage and computing time and is very easy to
comprehend.

Paice/Husk Stemmer
The Paice/Husk stemmer is an iterative algorithm with one table containing about 120 rules
indexed by the last letter of a suffix [18]. The stemmer uses a separate rule file, which is first read
into an array or list. This file is divided into a series of sections, each section corresponding to a
letter of the alphabet.

During word processing, the stemmer takes its last letter and uses the index to find the first rule
for that letter. If the rule matches, then it is applied to the word; and if not accepted, the rule index
is incremented by one and the next rule is applied. However, if the first letter of the next rule does
not match with the last letter of the word, this indicates that no ending can be stripped, so the
process ends. Once a rule has been found to match, it is not applied at once, but must first be
checked to confirm that it would leave an acceptable stem.

Paice/Husk stemmer has a benefit of its simplicity and each iteration handles both deletion and
recoding during the application of the rules. However, the algorithm is very heavy hence over
stemming may occur during stemming process.

Krovetz Stemmer
The Krovetz stemmer was developed by Robert Krovetz at the University of Massachusetts in
1993 [19]. It is quite a light stemmer as it makes use of inflectional morphology. The stemmer
effectively and accurately removes inflectional suffixes in three steps, the conversion of a plural to
its single form, the conversion of past to present tense, and the removal of ‘-ing’. The
transformation process firstly removes the suffix, and then checks in a dictionary for any recoding,
and finally returns the stem to the input word.

The stemmer attempted to enhance the accuracy. However, it is inefficient during stemming
complex words and large test data. The other problem of this stemmer is that it is unable to
handle words that are not in the lexicon. As a result, its reliability is affected for recall and
precision [20].

Amharic Stemmers
The first Amharic stemming algorithm that conflates words for information retrieval was developed
by Nega Alemayehu and Peter Willett [4]. Their work was one of the earliest main works in
Amharic NLP researches. The stemmer was iterative that removes prefixes and suffixes and also
considered letter inconsistency and reiterative verb forms. This algorithm first identifies a set of
stop-words and then a set of affixes associated with the remaining content-bearing words. The
stemmer removes affixes by iterative procedures that employ a minimum stem length, recoding
and context sensitive rules, with prefixes being removed before suffixes. Once the stem of the
word is obtained, the root is obtained by stripping all the remaining vowels from it. The
performance of the stemmer was measured on a sample data of 1221 words. The result of the
experiment shows that the stemmer performed at an accuracy of 95.9%.

Following the first Amharic stemmer, Atelach and Lars developed another Amharic stemmer
which is based on table lookup strategy [12]. This stemmer finds all possible segmentations of a
given word according to the morphological rules of the language and then selects the most likely
prefix and suffix for the word based on corpus statistics. It removes the prefix and suffix and then
attempts to look up the remaining stem (or alternatively, some morphologically driven variants of
it) in the stem dictionary to check that it is a potential stem of the word. The frequency and

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 45

distribution of prefixes and suffixes over Amharic words are based on a statistical analysis of a
large Amharic news corpus and some old-fashioned words from Amharic fiction. This stemmer
had an accuracy of 76% on news corpus and 60% on old-fashioned words when evaluated on a
limited text consisting of 1503 and 470 words respectively.

Afaan Oromo Stemmers
The first rule based Afaan Oromo stemmer was developed by M. Wakshum [21]. This stemmer
used suffix table in combination with rules that strips off suffix from a given word by looking up the
longest match suffix in the suffix list. 342 suffixes were compiled automatically by counting and
sorting the most frequent endings. Other linguistically valid suffixes were also included manually.
The stemmer finds the longest suffixes that match the end of a given word and remove. This
stemmer uses the longest-match, context-sensitive approach and rules that remove prefix and
suffix. The stemmer was evaluated by counting stemming errors and reduction of dictionary size.
It performed an accuracy of 92.52% based on the test data of 1061 words.

Another Afaan Oromo stemmer was developed by D. Tesfaye and E. Abebe [13] to improve
weakness of stemmer developed by M. Wakshum which had no rules to stem irregular and
duplicated words. This stemmer is based on a series of steps that removes a certain type of affix
by way of substitution rules and suffix removal. These rules apply for specific conditions, for
example, the resulting stem must have a certain minimal length. The output from the stemmer
indicates, out of 5000 words 38 words (0.77%) were under stemmed and 220 words (4.39 %)
were over stemmed. Totally this stemmer generated 258 words (5.16 %) wrongly stemmed
words. As a result, the accuracy of the stemmer was 94.84%.

2.5 Comparative Evaluation of Related Works
Table 1 summarizes the key properties of each of the popular English stemmers.

Language Researcher/s
Conflation
Technique

Context
Sensitive?

Advantage Disadvantage

English
Lovins

Rule-based (longest
match)

Yes Fast
Not all suffixes are

available

English Porter Rule-based (iterative) Yes
Most

accurate

Sometimes
produce invalid

stems

English Dawson
Rule-based (longest

match)
Yes Faster Very complex

English Paice/Husk Rule-based (iterative) No Simple form
Over stemming

may occur

English Krovetz
Rule-based and Table

Lookup
No

Light
stemmer

Poor recall &
precision

TABLE 1: Summary of comparative analysis of English stemming algorithms. Source: [22].

As discussed in section 2.4 above, stemming algorithms have been designed for different local
languages. However, there is no any research carried out to design stemming algorithm to stem
Kambaata words for several natural language processing applications. Thus, the Kambaata
stemmer is the first of its kind developed for the first time to stem Kambaata text using rule-based
approach.

The Kambaata stemmer is a single pass, context sensitive and rule based longest match
algorithm. Its general working procedure looks like the Lovins stemmer. However, its detail
working scenario is completely different. Even though, stemming algorithms are different for each
language and difficult to compare one with the one designed for another language, the Kambaata
stemmer is developed based on large corpus and its performance is far better when compared to
other local stemmers developed for Ethiopian languages.

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 46

Table 2 summarizes the key properties of some of the local stemmers.

Language
Primary

Researcher
Conflation Technique

Context
Sensitive?

Accuracy

Amharic Nega Alemayehu Rule-based (Iterative) Yes 95.90%

Amharic Atelach Alemu Affix removal & Dictionary Based No 75%

Afaan Oromo Mekonnen
Wakshum

Rule-based (Longest-match) Yes 92.52%

Afaan Oromo Debela Tesfaye Rule-based (Iterative) Yes 94.84%

Kambaata Jonathan Samuel Rule-based (Longest-match) Yes 96.87%

TABLE 2: Summary of comparative analysis of local stemming algorithms.

3. MORPHOLOGY OF KAMBAATA LANGUAGE
3.1 Overview of Kambaata Language
Kambaata is the name of the people that speak the Kambaata language and the name of the
language that they communicate [5]. It is called “Kambaati afoo” in Kambaata language, literally
means ‘the mouth of Kambaata’. At present, the language is estimated to be spoken by more
than a million people [23]. Currently, it serves as a medium of instruction in the primary schools
as well as taught as a subject in the junior, secondary high schools and preparatory schools.
Additionally, Kambaata language is vastly spoken oral language [24].

Kambaata belongs to the Highland East Cushitic, part of the Cushitic and the much bigger Afro -
Asiatic language group [5]. The language is mainly spoken and institutionalized in Kambaata and
Tambaaro Zone, located at 250 km south west of Addis Ababa, Ethiopia’s capital and situated at
northeastern part of Southern Nations, Nationalities, and Peoples Region of Ethiopia. The
language is also spoken by Kambaata migrants in other parts of the country and abroad.

The Kambaata people’s name and the language is available in numerous spellings in the literary
works. The most frequent ones include Kambaata, Kambata, Kambatta, Kembata, Kembatta,
Cambata, Cambatta [5], [23]. The people of Kambaata call their language by the name
“Kambaatissata” or “Kambaatissa”. It is also called “Kambaatigna or Kambaatinya” (in Amharic-
Latin script) or ከምባትኛ (in Amharic - Ge’ez script), and sometimes Kambatic (in English, just like

the ‘ic’ ending of “Amharic or Arabic”) [5].

Kambaata dialects with their lexical similarity are Tambaaro (95%), Alaaba (81%) and Kabeena
(81%) [23]. Kambaata also has higher lexical similarity with other Highland East Cushitic groups,
i.e. Sidaamo (62%), Libido (57%), Hadiyya (56%), and Gedeo (54%) [23].

3.2 Kambaata Morphological System and Word Formation
Kambaata is strictly suffixing language with a rich nominal and verbal morphology [24]. It is an
agglutinative language, where almost all derivational morphology and all inflectional morphology
involve affixation. It has been emphasized in [24] that Kambaata is exclusively suffixing language
and that there are no prefixes in the language. However, this study has discovered very few
loanwords with prefix affixation. For instance, the Kambaata loan word “xaaf” ‘write’ from Amharic
word “ፃፍ” ‘write’ can have multiple affixations including prefixes. By applying Kambaata

morphological rules, different word forms can be created as indicated in Table 3.

Loan Word Stem Prefix Suffix Amharic English

ma-xaaf-f-aachch xaaf ma- -f-aachch ከመፃሕፍት From books

ma-xaaf-a xaaf ma- -a መጽሓፍ Book (n)

TABLE 3: Prefix formation for loan word in Kambaata.

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 47

Inflectional affixes change stems with grammatical markers for things such as person, gender,
number, tense, and case. Regarding parts of speech in Kambaata, there are five open word
classes (nouns, verbs, adjectives and ideophones and interjections); and several closed word
classes (pronouns, numerals and quantifiers, demonstratives; hardly any conjunctions and
adverbs) [24]. Ideophones and interjections are morphologically invariant in Kambaata [5];
prepositions and conjunctions are totally unproductive for natural language processing purposes.
This is also the case for adverbs which are negligible in number [24]. Therefore, the discussion of
derivational and inflectional morphology concentrates on the main three parts of speech, namely
verbs, nouns and adjectives in which the rules are constructed.

In Kambaata, nouns are inflected for genders and cases [5]. Verbs are inflected for tense aspect
mood, person, gender, number and social status. Adjectives are inflected for genders and cases
like nouns. Other word classes are morphologically invariant or not important for the application of
NLP [24].

Word formation in Kambaata involves concatenated suffixes and irregularities through infixation,
compounding, blending, and reduplication of affixes which is the main challenge for stemming
Kambaata words.

4. KAMBAATA STEMMER
4.1 Corpus
Various text documents that contain the Kambaata words has been compiled. The corpus that is
utilized for the identification and analysis of affixes and word formations contained 117,198 total
word tokens with 26,731 distinct words. An additional corpus with 12,731 tokens containing 4,914
distinct words has been used to prepare the test data. The test data was collected from separate
corpus to examine the algorithm from another corpus.

4.2 Normalization and Tokenization
All punctuation marks apart from ‘apostrophe’ (’), which is used as glottal sound marker ‘i’ (e.g.
“asi’m” “look at”) and also used to separate successively occurring similar vowels in words (e.g.
“ga’aa” ‘for tomorrow’), control characters, numbers and special characters are removed from the
text before the data is processed. After punctuation marks and special characters apart from
apostrophe have been changed to spaces, which is used to mark a word splitting-up border, all
words were put in to separate lines in the tokenization process.

4.3 Compilation of Affixes
The known affixes of Kambaata language are suffixes, infixes, reduplication, compounding and
blending. In contrary to English stemmers that perform very effectively by removing suffixes along
with prefixes to get the stems, an effective and powerful Kambaata stemmer not only be able to
remove suffixes, but also remove infixes and transform irregular words to their stems as well.
Without removing all these affixes, the stemmer cannot be effectively used to stem Kambaata
documents.

Suffixes concatenation is frequent in Kambaata words. Consequently, much more base suffixes
can be combined with each other and attached to a word. Such combination is often extremely
huge complicating the identification process of the full list of concatenations. Thus, collecting
large data for affix analysis is considered as the ideal choice to compile the largest possible
suffixes from Kambaata language texts to be able to utilize for the development of the stemmer.
Therefore, 6299 unique suffixes (ranging from length of one character to twenty characters) and
more than 300 irregular word formations that require context sensitive and substitution rules have
been identified in the study.

The suffix collection ranges from simple suffixes; for instance, “ii”, “ikke”, “aan”, “indo” to
concatenated suffixes; for example, “anniichchisin”, “eemmahanniichch”, “iishshoomaantassa”.

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 48

Occasionally, “-n-” and “-m-” are infixed in Kambaata words [25]. The “-uu-” is also the other infix
known in the derivation of a verb “xaaf” ‘write’ to a noun “xuuf” ‘writing’. There is also
pragmatically known prefix “ma-” in the formation of a noun “ma-xaaf-a” ‘book’ from the same
verb “xaaf” ‘write’ even though it’s concluded in most literatures that Kambaata is exclusively
suffixing language [26]. However, the researcher believes that the existence of this prefix might
be because of the loan word ‘xaaf’ which is the stem of the semantically related words to this
stem.

4.4 Kambaata Stemmer Rules
The Kambaata stemmer has got two major components, the context-sensitive component and
suffix removal component. The stemmer has 20 groups of suffix removal rules that remove 6299
suffixes with longest match first remove fashion. The stemmer is also context sensitive having
255 context sensitive and recoding rules to handle other word formations including irregular
words.

Context Sensitive Rules
The three types of context sensitive actions defined and applied in the stemmer are:

Action 1: Don’t perform affix removal
Action 2: Transform or substitute the word with others partly or completely as specified in the

rules.
Action 3: Remove affixes.

The three types of conditions are the following:

Condition 1: Check characters at the beginning and at the end of the word, compare with the
rules if they match. If a match found, the stemmer transforms the word as per the
specification. This is to avoid the removal of non-genuine affixes.

FIGURE 1: Algorithm for condition 1.

The algorithm in FIGURE 1 is one typical example that replaces “ntaa” with “m” for a word
“giphpha-ntaa” but this is not the case for words like “gaan-taa” and “gix-antaa” which start
with the same letter ‘g’. The action taken for this condition is Action 2 when the condition is
satisfied.

Condition 2: Words with character lengths of 2 or 3 should directly be taken as stems. These
are words directly taken as output stems from test corpus if exist.

FIGURE 2: Algorithm for condition 2.

The action taken for this condition is Action 1 when the condition is satisfied.
Condition 3: A minimum stem length should be greater or equal to two characters. The
stemmer removes the matching suffix if and only if the length of the remaining word is greater

if (word starts with "g" and word ends with "ntaa" and not word starts with “gaan" and

not word starts with "gix") {

replace "ntaa" with "m";

}

if (length of Word is 2 or 3) {

return Word as stem;

}

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 49

or equal to 2. This is to maintain the minimum stem length of the word in the language. In
Kambaata meaningful word or stem has a minimum length of 2.

FIGURE 3: Algorithm for condition 3.

The algorithm in FIGURE 3, controls the suffix removal while removing matching suffixes.

Recoding Rules
Substitution rules are defined to handle some of the affixes individually. The algorithm in FIGURE
4 and example given in TABLE 4 are very few typical examples of this kind.

FIGURE 4: Algorithm for substitution.

For example, the pseudocode for the algorithm in FIGURE 4 shows that, for a word that starts
with ‘xaa’ and having ‘ccano’ or ‘jjo’ at its ending, will be recoded as follows:

Ending Replaced by Word Stem Condition
ccano z xaa-ccano xaaz if word stars with ‘xaa’

jjo z xaa-jjo xaaz if word stars with ‘xaa’

TABLE 4: Substitution rule example 1.

However, if the word starting is changed to ‘xuu’, these endings will no more be replaced by the
same character ‘z’. Rather these ending will be replaced by ‘d’ to form a stem ‘xuud’ “see” which
has completely different meaning from the previous word ‘xaaz’ “add”.

Ending Replaced by Word Stem Condition
jjo d xuu-jjo xuud if word stars with ‘xuu’

TABLE 5: Substitution rule example 2.

Suffix Removal Rules
To deal with each suffix individually, 20 groups of suffix removal rules are defined. The rules
begin with stemming the longest suffix first and the smallest suffix last together with other
conditions. Only one rule is introduced as an example in pseudo-code in Table 6 as follows.

if ((length(WORD)-length(SUFFIX)>1) {

Remove Suffix;

}

if ((word ends on ccano|jjo) && (if word starts with xaa)) {

replace “can” or “jjo” by “z”;

}

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 50

FIGURE 5: Algorithm for suffix removal with suffixes of length two.

4.5 The Kambaata Stemming Algorithm

FIGURE 6: Kambaata stemming algorithm.

The designed Kambaata stemming algorithm provided in FIGURE 5 works in the following way.
First, a text file containing test data is opened and each word is read sequentially. If there is no
next word or EOF is reached, the stemmer stops processing; otherwise, it continues. Next, the
length of the word is measured and if the word has length of 2 or 3 characters, the word is
returned as a stem without going through the stemming process. If not (i.e. if the length of the
word is greater or equal to 4), it adheres the context sensitive and recoding procedures according
to the specific rules provided. If the word satisfies the conditions, it is transformed and recoded.
Word to be stemmed is provided to suffix removal rules finally when it does not fulfill the
conditions presented in the context sensitive and recoding rules. The suffix stemming rules range
from one-letter suffixes to twenty-letter suffixes. The algorithm begins stemming the words from
the longest twenty-letter suffixes (defined in step 1) to the shortest one-letter suffixes (defined in
step 20) sequentially. The minimum stem length controlling rule is defined under the suffix

While Not End of File (EOF)
Do
1. Get the WORD and measure the length(WORD) to be stemmed
2. IF length (WORD) = 2 or 3

Return WORD
ELSE

CONTINUE
3. IF the length(WORD)>=4

3.1. Determine the WORD beginning and ending list in the rules and Search a list of
transformation for a match to the WORD being stemmed

IF a match found
Recode the WORD according to the rule and
Return STEM

ELSE
CONTINUE

3.2. Determine the SUFFIX and Search for the suffix in the ending list
IF a match found

IF (length(WORD)-length(SUFFIX)>1
Remove suffix

Return STEM
IF last letter of the remaining stem is double & length (WORD)> 4

Remove last letter
Return STEM

End for
End While

if ((word ends on
aa|ae|ai|ak|am|an|as|at|au|be|bo|bu|ee|ei|en|eo|es|eu|ia|ie|ii|in|is|it|kk|oe|oi|on|oo|os|qi|qo|ra|ro|ru|sa|
se|si|so|ss|su|ta|te|to|ua|ue|ui|un|us|ut|uu|yi|yu|ee) && (length of the remaining part is greater than
1)) {

remove the suffix;
if ((length of the remaining word is greater than 4) && (the remaining word ends
on double letter)) {

remove last letter;
}

}

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 51

removal component and is checked before the suffix is completely removed. The stemmer also
removes last double letter for remaining words (after suffix removal) with character length of
greater than 4 and if the last letter is double. The procedure continues reading next word until end
of file (EOF) is reached. If EOF not reached, the process continues until all words are stemmed.

4.6 Evaluation of the Stemmer
To examine the performance of the stemmer, evaluations has been carried out. A separate
evaluation data set was taken out randomly from the test corpus which was not utilized for the
affix analysis. The evaluation test set contained 2425 distinct words. The corpus from which the
rules of the stemmer derived was totally different from the test data. This is done deliberately in
order to predict the efficiency of the stemmer in real scenario.

The result of the evaluation of the stemmer indicates that, out of 2425 words, 2349 words
(96.87%) were stemmed correctly, 63 words (2.60%) were over stemmed and 13 words (0.54%)
were under stemmed. The total errors account for 3.13% (76 words). As a result, the accuracy of
the stemmer is 96.87% on the evaluation.

Word Compression
The stemmer is as well evaluated in terms of word compression ratio. For determining the word
compression rate (C), or reduction of dictionary is calculated using the formula [27]:
 C = 100 * (W - S)/W
Where,
 C - is the compression value (in percentage)
W - is the number of the total words
 S - is a distinct stem after conflation

The percentage of compression for Kambaata words based on the test set text for the stemmer is
100 * (2425- 828) / 2425 = 65.86%. From this result, it can be understood that the stemmer can
reduce the morphological variants of words and the size of the file by 65.86% which is very
significant reduction.

Over stemming and under stemming errors:
The main reason for errors in stemming Kambaata words is the language’s rich morphology. This
is due to complex morphology that makes use of concatenated suffixes, irregularities through
infixation, compounding, blending, and reduplication of affixes.

In conclusion, reasons for under stemming and over stemming are:

 It is difficult to bring the full list of affixes mainly because of the rich morphological behavior of
the Kambaata language.

 It is hard to define comprehensive list of context sensitive conditions and/or rules.

 Loan words such as forograammata (programme), tiraatiri (theater) and aksuumaakka
(Aksumite) are not conflated correctly.

5. IMPACT AND SIGNIFICANCE OF THE STUDY
This research introduced a stemmer for Kambaata language words that helps the language’s
speakers to discover information of their need quickly without having any kind of problems while
querying words. The artifact of this study could also be a foundation to explore and develop
various other NLP applications such as, IR systems, text summarizers, machine translation, text
categorization and morphological analysis tools for Kambaata language.

Kambaata word processing tools could also need stemming algorithm that functions together with
spell checker software to enhance the efficiency of spelling checking [28]. Kambaata word
stemmer could also give an advantage of reducing the size of documents [12]. Because an
individual stem usually corresponds to several complete terms, by storing stems rather than
words, a data compression rate of 65.86 percent is also attained by this research work.

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 52

In Kambaata, a word has got quite large variants and conflating all these variants increases
performance of the retrieval [10]. It also decreases storage space needed for index documents
[29]. Moreover, the stemming algorithm could also provide advantages of designing tools such as
term frequency counter and is used to reduce size of documents by decreasing word variations.

6. CONSLUSION & RECOMMENDATION FOR FUTURE WORK
6.1 Conclusion
Analysis of the morphology of Kambaata words shows that the language is rich morphologically
(see Appendix). The types of affixations such as suffixes, infixes, reduplication, blending,
compounding and concatenation of suffixes in the language contribute a lot in generating rich
morphological variants and make the word formation process complicated. Therefore, attempting
to conflate Kambaata words manually is very tedious and extremely difficult. For this reason,
applying automated conflation procedure such as stemmer is very important for NLP applications.

In this study, a context-sensitive, longest match stemmer is designed using a rule-based
approach for stemming Kambaata text. To apply the longest match technique, all possible long
suffixes and basic suffixes were collected from the corpus. This stemmer does not just remove
suffixes, but also takes exceptional scenarios into consideration and stems them by applying
substitution and context sensitive rules.

From the evaluation carried out on the selected test data, it is demonstrated that the algorithm
stems words with an accuracy of 96.87% with an error rate of 3.13%.

The main challenges in Kambaata for stemming words is its rich and complex morphology, i.e.
words are formed making use of multiple (concatenated) suffixes, irregularities through infixation,
compounding, blending, and reduplication of affixes. The other challenge is that the language is
little explored regarding its linguistic feature, most importantly, its morphology.

In general, in this research, word conflation technique for Kambaata words has been explored.
Rules have been defined; algorithm has been designed and implemented. The algorithm has also
been tested and reported that it is effective and very fast by stemming 330 words per second.

6.2 Recommendation
In this research, stemming algorithm is attempted for stemming Kambaata words for first time. A
significant move for future enhancement of stemming Kambaata words could be a study on
stemming techniques for reduplicated, blended and compound words.

The researcher also recommends the following potential open research areas.

 Designing other NLP tools like morphological analyzer, machine translation, and automatic
text summarization tools for Kambaata language using this stemmer.

 Research could also be conducted on designing Kambaata information retrieval system
making use of this stemming algorithm.

 NLP applications need standard corpus preparation. Hence, preparing the standard corpus
for Kambaata NLP researches could also be another research opportunity in the field.

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 53

7. REFERENCES
[1] J. B. Lovins, “Development of a stemming algorithm,” Mechanical Translation and

Computational Linguistics, vol. 11, no. 1 and 2, 1968.

[2] Y. Fisseha, “Development of Stemming Algorism for Tigrigna Text,” Master’s Thesis, Addis
Ababa University, Addis Ababa, June 2011, unpublished.

[3] M. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130-137, 1980.

[4] N. Alemayehu and P. Willet, “Stemming of Amharic Words for Information Retrieval,” Literary
and Linguistic Computing, vol. 17, no. 1, pp. 1-17, 2002.

[5] Y. Treis, A grammar of Kambaata (Ethiopia), Part I: Phonology, Nominal Morphology and
Non-verbal Predication, st ed. K ln: Rüdiger Köppe, 2008.

[6] Y. Treis, “Relativization in Kambaata from a typological point of view,” In: Zygmunt
Frajzyngier and Erin Shay (eds.), Interaction of morphology and syntax: Case studies in
Afroasiatic, pp. 161-206, Amsterdam/Philadelphia: Benjamins. 2008b.

[7] W. B. Frakes, “Stemming algorithms. In Frakes,” in Information retrieval: data structures and
algorithms: Prentice-Hall, 1992, pp. 131-160.

[8] L. Lessa, “Development of stemming algorithm for Wolaytta text,” Master’s Thesis, Addis
Ababa University, Addis Ababa, July 2003, unpublished.

[9] G. Salton, Automatic text processing: The Transformation, Analysis, and Retrieval of
Information by Computer, 1st ed. Reading, Mass. [etc.]: Addison-Wesley, 1989.

[10] M. P. Lennon, D. Tarry, and P. Willett, “An evaluation of conflation algorithms for information
retrieval,” Journal of Information Science, vol. 3, pp. 177-183, 1981.

[11] J. Savoy, “Stemming of French Words Based on Grammatical Categories,” Journal of
American Society for Information Science, vol. 44, no. 1, pp. 1-9, 1993.

[12] A. Alemu and L. Asker, “An Amharic Stemmer: Reducing Words to their Citation Forms,” The
Association for Computational Linguistics, Prague, Czech Republic, June 2007.

[13] D. Tesfaye, and E. Abebe, “Designing a Rule Based Stemmer for Afaan Oromo Text,”
International journal of computational linguistics (IJCL), vol. 1, no. 2, October 2010.

[14] C. Paice, “Method for evaluation of stemming algorithms based on error counting,” Journal of
the American Society for Information Science, vol. 47, no. 8, pp. 632-649, 1996.

[15] J. Dawson, “Suffix removal for word conflation,” In Bulletin of the Association for Literary and
Linguistics computing, vol. 2, No. 3, pp. 33-46, 1974.

[16] Rani, SP Ruba, B. Ramesh, M. Anusha, and J. G. R. Sathiaseelan, “Evaluation of Stemming
Techniques for Text Classification,” International Journal of Computer Science and Mobile
Computing, vol. 4, no. 3, pp. 165-171, 2015.

[17] P. Willett, “The Porter stemming algorithm: then and now,” Program, vol. 40, no.
3, pp. 219-223, 2006.

[18] C. D. Paice, “Another stemmer,” ACM SIGIR Forum, vol. 24, no. 3, pp. 56-61, 1990.

Jonathan Samuel & Solomon Teferra

International Journal of Computational Linguistics (IJCL), Volume (9) : Issue (2) : 2018 54

[19] R. Krovetz, “Viewing Morphology as an inference process,” In proceedings of the 16
th

Annual
International ACM SIGIR conference on research and development in information retrieval,
pp. 191-202, ACM New York, 1993.

[20] A. Ismailov, M.M. Abdul Jalil, Z. Abdullah and N.H. Rahim, “A Comparative Study of
Stemming Algorithms for Use with the Uzbek Language,” In proceedings of the 3rd
International Conference on Computer and Information Sciences (ICCOINS), 2016.

[21] M. Wakshum, “Development of Stemming Algorithm for Afaan Oromo Text,” M. Sc. Theses,
Addis Ababa University, 2000, unpublished.

[22] Anjali Ganesh Jivani et al, “A Comparative Study of Stemming Algorithms,” Int. J. Comp.
Tech. Appl., vol. 2, no. 6, pp. 1930-1938.

[23] “Ethnologue: Languages of the World,” Ethnologue, 2017. [Online]. Available:
https://www.ethnologue.com.country/ET [Accessed: 12- Dec- 2017.

[24] Y. Treis, “Kambaata Numerals and Denumerals Revisited,” LLACAN.

[25] Y. Treis, “Categorial hybrids in Kambaata,” Journal of African Languages and Linguistics, De
Gruyter, pp. 215-254, 2012.

[26] Y. Treis, “Expressing future time reference in Kambaata,” Nordic Journal of African Studies,
vol. 20, no. 2, pp.132-149, 2012.

[27] D. Harman, “How effective is suffixing?” Journal of the American Society for Information
Science, vol. 42, no. 1, pp. 7-15, 1991.

[28] Md. Islam, Md. Uddin and M. Khan, “A Light Weight Stemmer for Bengali and Its Use in
Spelling Checker,” Center for Research on Bangla Language Processing, BRAC University,
Dhaka, Bangladesh.

[29] D. Sharma, “Stemming Algorithms: A Comparative Study and their Analysis,” International
Journal of Applied Information Systems, vol. 4, no. 3, pp. 1-6, 2012.

