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Abstract 

 
Spike sorting is of prime importance in neurophysiology and hence has received 
considerable attention. However, conventional methods suffer from the degradation 
of clustering results in the presence of high levels of noise contamination. This paper 
presents a scheme for taking advantage of automatic clustering and enhancing the 
feature extraction efficiency, especially for low-SNR spike data. The method employs 
linear discriminant analysis based on a fuzzy c-means (FCM) algorithm. Simulated 
spike data [1] were used as the test bed due to better a priori knowledge of the spike 
signals. Application to both high and low signal-to-noise ratio (SNR) data showed that 
the proposed method outperforms conventional principal-component analysis (PCA) 
and FCM algorithm. FCM failed to cluster spikes for low-SNR data. For two 
discriminative performance indices based on Fisher's discriminant criterion, the 
proposed approach was over 1.36 times the ratio of between- and within-class 
variation of PCA for spike data with SNR ranging from 1.5 to 4.5 dB. In conclusion, 
the proposed scheme is unsupervised and can enhance the performance of fuzzy 
c-means clustering in spike sorting with low-SNR data. 
 
Keywords: Spike sorting; spike classification; fuzzy c-means; principal-component analysis; linear discriminant 

analysis; low-SNR. 

 
 

1.  INTRODUCTION 

The recording of neural signals is of prime importance to monitoring information transmission by 
multiple neurons. The recorded waveform usually consists of action potentials (i.e., spikes) from several 
neurons that are in close proximity to the electrode site [2]. A number of reports in systems neuroscience 
have assumed that brain encodes information in the firing rate of neurons. Consequently, detecting 
the spiking activity in electrophysiological recordings of the brain is seen to  
be essential to the decoding of neural activity. 
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The analysis of neuronal recordings consists of two main general steps: (1) detecting and confirming 
waveform candidates that are possible action potentials, and (2) distinguishing different spikes and 
generating a series of spike trains according to the temporal sequence of action potentials. The unique 
and reproducible shape of spikes produced by each neuron allows the spiking activity of different 
neurons to be distinguished [2-3]. 
 
During the past 3 decades, various classification methods ranging from simple amplitude discrimination 
to a neural-network classifier have been applied to spike sorting [4-7]. Conventional methods such as 
principal-component analysis (PCA), fuzzy c-means (FCM), and the use of simple ad-hoc features such 
as the peak-to-peak amplitude and spike duration can be useful for spike recordings when the 
signal-to-noise ratio (SNR) is sufficiently high [4, 8]. However, these methods become inadequate for 
discriminating spikes in the presence of high background noise. 
 
Many efforts – including supervised and unsupervised approaches – have been dedicated to improving 
spike sorting in the presence of high noise. The use of a supervised classifier produces acceptable 
results even under a very high background noise [9-10]. However, an automated method for spike 
sorting is necessary, at least in the initial analysis of experimental data that sets a basis for further 
analysis using some form of supervised classification algorithm for spike sorting. Kim and Kim [11-12] 
demonstrated an unsupervised approach comprising a spike detector, 
negentropy-maximization-based projection pursuit feature extractor, and an unsupervised classifier 
using a mixed Gaussian model. One of the key concepts is that feature extraction and dimensionality 

reduction can be combined together using a linear transform expressed as xWy T
= , where x  and 

y  are the observed data and feature vectors, respectively, and W  is a linear projection matrix such 

that y  becomes discriminative so as to aid separation of the clusters. Many types of optimization criteria 

can be used to determine an appropriate W , such as maximizing the variance, non-Gaussianity, 

negentropy, or the ratio of between- and within-class variations [13-14]. The ratio of between- and 
within-class variations (Fisher's linear discriminant criterion) appears to be an especially valid index 
since it allows simultaneous balancing of the maximization and minimization of the between- and 
within-class variations. Based on Fisher's linear discriminant criterion, linear discriminant analysis (LDA) 
then produces a linear projection matrix, and greatly enhances the classification ability. Inspired by this 
idea, we have designed an unsupervised spike sorting system that is capable of detecting and 
classifying spikes even under a low-SNR condition.  
 
Our method combines action potential detectors [15], LDA-based feature extraction, and FCM 
clustering. This combination is unsupervised because the spike features are automatically clustered 
by the FCM algorithm. The proposed scheme can also resolve the low-SNR problem thanks to the high 
discriminative ability provided by LDA. 
 
 

2.  MATERIALS AND METHODS 

2.1 The overall spike sorting system 
The proposed system, as illustrated in Fig. 1, is an automated neural spike sorting system that does 
not require interactive human input, and shows high performance under a low-SNR condition. The 
system can be divided into three main stages. In the first stage, all possible action potentials are obtained 
using a detector. In the second stage, the projection matrix is trained for feature extraction. This is 
because although LDA can offer more effective discriminating features than PCA or when analyzing 
the original signal domains, it has the drawback of needing supervised knowledge about the targets 
of action potentials. Therefore, FCM clustering is used to analyze the obtained action potentials 
beforehand to form classification targets for LDA training. In the third stage, an LDA projection matrix 
projects all the detected action potential candidates to a new domain, the canonical space, which is 
named the LDA space in this paper for convenience.  
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FIGURE 1: Overall structure of the proposed spike sorting system. 
 
 

2.2 Construction of simulated signals 
Simulated signals were constructed from the data records provided by Quiroga et al. [1], which have 
594 different average spike shapes. Background noise was generated by randomly selecting spikes 
from the database and superimposing them at random times and amplitudes. This method was 
employed so as to mimic the background noise of actual recordings as generated by the activity of 
distant neurons. Next, a train of three distinct spike shapes from the database were superimposed on 
the noise signal at a random peak value of 1. In Eq. (1), we represented the noise level using the SNR 
as follows: 

    

peak value of action potential with minimum amplitude        

root-mean-square value of pure noise segment            
    

By simulation, the interspike intervals of the three distinct spikes followed a Poisson distribution with 
a mean firing rate of 20 Hz. Note that constructing noise from spikes also ensures that the noise and 
spikes exhibit similar power spectra. 

 
2.3 Spike detection 
Spike detection, as the first step of processing the obtained action potentials, can be categorized into 
three main groups, based on (1) the peak-to-peak threshold, (2) template matching, and (3) statistical 
strategies [15-17]. To avoid the artificial operations needed in the first and second method categories, 
we adopted the method proposed by Donoho and Johnstone [15]. The threshold (Th) is selected as 

nhT σ4=
                                   (2) 

where nσ  is an estimate of the standard deviation of the background signal 









=

6745.0
median

x
nσ

                           (3) 

and x  is the signal comprising spikes and noise. It is noted that taking the standard deviation of the 
signal could lead to very high threshold values, especially in cases with high firing rates and large spike 

SNR (dB) = 20 log10 (1) 
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amplitudes. In contrast, by using the estimation based on the median, the interference of the spikes 
is diminished (under the reasonable assumption that spikes amount to a small fraction of all samples). 
 
2.4 Feature extraction 
As reported in the review of Lewicki [3], early studies on spike sorting simply detected spikes using the 
height of an action potential. The width and peak-to-peak amplitude were also used to characterize the 
shape features of spikes when the computing resources were very limited. However, choosing features 
based on this intuitive approach often results in poor cluster separation. This prompted the use of PCA 
to find an ordered set of orthogonal basis vectors that capture the directions in the data of largest 
variation [4, 17]. LDA is another commonly used approach for discrimination [13, 18, 19], and is reported 
to be more efficient than PCA experimentally except for very small training sets [18, 20-21]. LDA aims 
to find an optimal transformation by maximizing the between-class distance and simultaneously 
minimizing the within-class distance, thus achieving maximum discrimination: 
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T-1T
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wS  and bS  are the between-class and within-class matrices, respectively. ijx  is the j -th vector 

corresponding to the i -th class center, im  and xm  are the centers of overall vectors. L , iN , and TN  

are the number of classes, the number of vectors of the i -th class, and the total number of the overall 

data vectors [22]. By applying eigendecomposition to the scatter matrices, the optimal transformation 

W is readily evaluated by computing the eigenvectors of .
1

bw SS
−

 Although LDA has an intrinsic 

limitation of requiring one of the scatter matrices of the objective function to be nonsingular, this problem 
can be overcome by using the PCA+LDA algorithm [18].   
 
2.5 Choosing the number of classes and fuzzy c-means clustering 
It is important to choose an appropriate number of classes. Bayesian approaches [23] can be used to 
estimate the probability of each model when assuming different numbers of classes given the observed 
data. Fuzzy approaches have also been used to estimate a suitable number of clusters, as studied by 
Xie and Beni [24]. In this study we determined the number of clusters for FCM by performing FCM with 
an increasing number of clusters, beginning with two clusters. We investigated the matrix of the 
Mahalanobis distances between each pair of group means; the Mahalanobis distance is a normalization 
technique that does not require a new threshold value to be specified for different experiments. 

Furthermore, according to multivariate analysis, we could also apply a sequence of tests by
p

values 
(with the threshold set to 0), which can be computed after LDA. This estimation method allows the 
number of clusters to be chosen without human intervention.  
 
After selecting a reasonable number of clusters, a clustering algorithm is used to separate 
multidimensional data into different groups. Simple approaches such as ISODATA and k-means 
clustering [25] can be used. However, we adopted FCM to calculate the fuzzy centers [26], which 
involves finding locally optimal fuzzy clustering of the data based on locally minimizing the generalized 
least-square error function 
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where iku  is the membership strength of pattern ky  in cluster i , iv  is the center of the i -th cluster, 

ky  is the k -th training pattern, and m is a weighting exponent that sets the fuzziness. The 

magnitude-squared term in Eq. (7) is the Euclidean norm, and is replaced by the norm  
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                  (8)  

 
In our method Eqs. (7) and (8) are used to find the centers of the clusters that will partition the set of 

training patterns so as to minimize the least-squared error function ).( vU,mJ  The clustering process 

starts with a random set of centers. Centers   and membership strengths   are calculated, and the 

root-mean-square difference is calculated between the current partition, 
n

U  and the previous one, 
1−n

U . The process terminates when the difference is below a specified threshold (0.001% in the 

experiments reported here). 
 
  
 
2.6  Performance indices 
We used two performance indices based on the scatter matrix to quantitatively compare the efficacy 
of the proposed method with those of other approaches based on linear transformations [12]. Each 

index is a function of transform matrix W . The first index is used for Fisher's discriminant function, and 

is defined as follows: 
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bS  and bS
~

 represent the between-class matrices before and after a linear projection by W , 

respectively, and wS
~

 and wS  are the associated within-class matrices. The second index, the 

generalized Fisher linear discriminant function, which can be interpreted in a similar context, is defined 
as 

})()Trace{()(
T-1T

2 WSWWSWW bw=J                (10) 
 
 

3.  RESULTS 

3.1  Spike sources and determining the number of clusters 
The overall system was tested for three-unit clustering. The simulated signals are shown in Fig. 2A. 
We further extracted 300 spikes and aligned them with their highest amplitudes in the center of the 
waveforms, shown in Fig. 2B, by the thresholding method mentioned in Section 2.1 and preprocessed 
them using PCA to reduce their dimensionality. In the experiments, the total number of clusters for 
grouping using FCM was initially set to be 2 and was increased gradually. For demonstration purpose, 
we only show and compare the clustering result with the cases of the total cluster number for 2 to 4.  
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FIGURE 2: (A) Simulated signals, with the threshold shown by the horizontal line. (B) Extracted spikes. 
 
 
 
 
The categorization results are illustrated, in Figs. 3-5. For the grouping with the number of clusters set 
to two, we observed that the first cluster had relatively consistent waveform members (red lines in Fig. 
3) while the second cluster (blue lines in Fig. 3) could be further divided into more classes. The 
corresponding average waveforms of these two clusters of waveforms are shown in the inset of Fig. 
3.  
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Fig. 4 illustrates the results with the total number of clusters set to three, where the waveforms of the 

A B 

FIGURE 3: Grouping results after FCM with the desired number of clusters set to two. The obtained two clusters 
are indicated by the red and blue lines . The inset shows the corresponding average waveforms  
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first, second, and third clusters are indicated by the red, blue, and green lines, respectively. It is evident 
that this produces better clustering results than those in Fig. 3. To provide an overview of these three 
clusters of signals, the inset shows the associated three average waveforms.  
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FIGURE 4: Grouping results after FCM with the desired number of clusters set to three. The obtained three clusters 
are indicated by the red, blue, and green lines. The inset shows the corresponding average waveforms 
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FIGURE 5: Grouping results after FCM with the desired number of clusters set to four. Only three meaningful 
clusters were produced (indicated by the red, blue, and green lines). The inset shows the corresponding average 
waveforms, which clearly indicates that the fourth cluster (black lines) was almost identical to the third cluster  

Finally, Fig. 5 shows the results of having four clusters in FCM clustering. The figure shows that the 

third and fourth clusters had almost the same types of waveforms (green and black lines, respectively), 
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as also confirmed by the corresponding average waveforms plotted in the inset. This indicates that there 

were essentially only three units of signals. Table 1 is the matrix of Mahalanobis distances between 

each pair of group means with the number of clusters set to five, in order to verify the validation of the 

estimated number of clusters. Note that redundant clusters are indicated by a very small Mahalanobis 

distance (cluster 4 and cluster 5 are close to cluster 1 with Mahalanobis distance 3.24 x 10
-10

 and 4.12 

x 10
-6

, respectively). 

 

 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Cluster 1  1.26 x 10
1
 4.06 x 10

0
  3.24 x 10

-10
  4.12 x 10

-6
 

Cluster 2 1.26x10
1
  1.76 x 10

1
 1.26 x 10

1
 1.26 x 10

1
 

Cluster 3 4.06x10
0
 1.76 x 10

1
  4.06 x 10

0
 4.06 x 10

0
 

Cluster 4  3.24x10
-10

 1.26 x 10
1
 4.06 x 10

0
   4.20 x 10

-6
 

Cluster 5 4.12x10
-6

 1.26 x 10
1
 4.06 x 10

0
  4.20 x 10

-6
  

 
TABLE 1: The matrix of Mahalanobis distances between each pair of group means. Redundant clusters are 
indicated by a very small Mahalanobis distance. 

 

 
3.2  Comparison of clustering abilities without noise contamination 

Since we had determined a reasonable number of clusters by comparing the clustering results, we 

visualized the spike data in different planes (for best illustration, we show only two most important 

coefficients in each plane). Fig. 6A is a scatter plot of the spikes drawn using two of the coefficients 

(35th and 36th coefficients in the experiment) such that the chosen features had the largest variations 

to spread the spike curves. The figure shows the distribution of the spikes projected onto the PCA+LDA 

plane (denoted as LDA only for brevity, Fig. 6B) and the associated two components, or bases (Fig. 

6D). It is evident that LDA exhibited better discriminative ability than PCA (the scatter plot in Fig. 6C 

and associated principal components in Fig. 6E, respectively). It is noted that, comparison of Fig. 6A 

and 6B indicates that PCA also had a better separating ability than the original domain. 

 
 
3.3  Comparison of clustering ability under a low-SNR condition  

To investigate the classification ability for very-low-SNR spike data enhanced by the LDA-based FCM 

algorithm, we tested spike data that were contaminated with random noise to produce SNRs of 1.5, 

2.0, 2.5, 3.0, 3.5, 4.0, and 4.5. For brevity, we only showed the scatter plot of the spikes before LDA 

under SNR = 1.5 in Fig. 7A. As illustrated in Fig. 7B, the spikes could only be clustered into two (and 

not three) groups due to the presence of the high-level noise. Fig. 7C is the scatter plot of these two 

groups of spikes. The clustering results of LDA and PCA are shown in Fig. 7D and 7E, respectively. 

It is clear that LDA exhibited the best clustering performance. To further quantitatively compare the 

discriminative abilities of PCA and LDA, Eqs. (9) and (10) were used as two indices to evaluate the 

grouping performance. Fig. 8 shows these two indices as functions of the SNR, which indicates that 

LDA is superior to PCA over a broad range of SNRs. 

 

 

A B 
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FIGURE 6: Scatter plots of the spike vectors under different spaces. (A-C) Scatter plots on the original, LDA, and 
PCA spaces, respectively. (D and E) Associated LDA and PCA components, respectively 
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FIGURE 7: FCM alone failed to separate generate the third class when SNR = 1.5 dB. (A) Spikes before clustering. 
(B) First and second clusters after clustering in the time domain, with the inset showing the two corresponding 
average waveforms . (C) Scatter plot of clustered result of the original space. (D and E) Plots of clustering using 
LDA and PCA, respectively. 
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4.  CONCLUSION & FUTURE WORK 

We implemented an automatic neural spike sorting system that does not require interactive human input. 
The first step of the proposed scheme involves extracting spikes using a detector. The desired number 
of clusters is then iteratively changed with the obtained spikes clustered using FCM, and the distances 
between cluster centers are quantified using the Mahalanobis distance. Assigning too many clusters 
results in FCM producing clusters with almost identical centers, as shown by Fig. 5 and Table 1. As 
reported by Zouridakis and Tam [8], FCM is suitable for clustering spike data with a low noise level, 
and this is verified in Fig. 4. However, they did not investigate the grouping performance in the presence 
of very high noise levels. The experiments performed in this study revealed that FCM might fail to 
separate spikes into a sufficient number of clusters due to noise contamination (see Fig. 7B and 7C). 
 
Besides FCM, some researchers have also used several types of linear transformation for feature 
extraction in the sorting of data [27-29]. Among them, PCA is arguably the best known and most widely 
used. PCA has previously been utilized for feature extraction by Richmond and Optican [30] in spikes 
generated by the primate inferior temporal cortex. However, PCA has limited utility when the signals 
of interest are sparsely distributed, such as when the difference between firing patterns is based on 
one or a small number of spikes occurring within a narrow time window. This issue arises due to PCA 
emphasizing global features in signals [31] - PCA focuses on computing eigenvectors accounting for 
the largest variance of the data are selected, but these directions do not necessarily provide the best 
separation of the spike classes. 
 
In this study, we utilized FCM as the clustering strategy for implementing an unsupervised spike sorting 
system. We further improved the discriminating ability by incorporating LDA [13, 18-19] for feature 
extraction, which is a frequently used method for classification and dimension reduction. LDA and its 
variations thereof have been used widely in many applications, particularly in face recognition. LDA 
aims to find an optimal transformation by minimizing the within-class distance and maximizing the 
between-class distance simultaneously, thus maximizing the discrimination ability. However, such an 
approach cannot be implemented in an unsupervised way. In practice, it is very difficult to perform spike 
sorting by directly applying supervised approaches during the course of an experiment. Thus, we 
incorporated FCM to avoid the problem resulting from the lack of a priori knowledge of spike targets. 
 
The clustering performances of FCM alone, PCA, and LDA were compared by visualizing scatter plots 
of the spikes. As shown in Fig. 6 and 7, the proposed scheme outperformed FCM and PCA. This is 
because FCM exhibits low noise tolerance and PCA only focuses on maximizing the variation rather 
than the grouping performance. A further comparison of PCA and LDA under a low-SNR condition is 

provided in Fig. 8. LDA exhibited better (greater) performance values for both indices 1J  and 2J . For 

instance, at SNR = 1.5 dB, 1J  for LDA and PCA was 50.63 and 23.86, respectively, and 2J  for LDA 

and PCA was 28.41 and 20.83, respectively. That is, at SNR = 1.5 dB, LDA was 2.12 times the ratio 

of between- and within-class variation of PCA for 1J , and 1.36 times for 2J . When SNR was 4.5, 1J  

for LDA and PCA was 381.62 and 165.67, respectively, and 2J  for LDA and PCA was 42.27 and 28.25, 

respectively. That is, at SNR = 4.5 dB, LDA was 1.50 times the ratio of between- and within-class 

variation of PCA for 1J , and 1.48 times for 2J . The results revealed that LDA improves the grouping 

performance for low-SNR spike data. 
 
The performance of the proposed unsupervised spike sorting system could be further improved by 
combining more powerful feature extraction approaches, such as wavelet and Gabor transformations 
[1, 32-33]. Wavelet transformation has been proven to be excellent for reducing noise and signal 
reconstruction, and Gabor transformation makes use of both time- and frequency-domain information. 
The use of more feature coefficients to represent spikes increases the importance of the efficiency of 
the dimension reduction technique. Incorporating such feature extraction methods into the proposed 
scheme should be investigated in future work. 
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FIGURE 8: Performance comparison of LDA and PCA using two indices: 1J  and 2J . 
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