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EDITORIAL PREFACE 

 
This is Third Issue of Volume Eight of the Signal Processing: An International Journal (SPIJ). 
SPIJ is an International refereed journal for publication of current research in signal processing 
technologies. SPIJ publishes research papers dealing primarily with the technological aspects of 
signal processing (analogue and digital) in new and emerging technologies. Publications of SPIJ 
are beneficial for researchers, academics, scholars, advanced students, practitioners, and those 
seeking an update on current experience, state of the art research theories and future prospects 
in relation to computer science in general but specific to computer security studies. Some 
important topics covers by SPIJ are Signal Filtering, Signal Processing Systems, Signal 
Processing Technology and Signal Theory etc. 

 
The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. 
Started with Volume 8, 2014, SPIJ appears with more focused issues related to signal processing 
studies. Besides normal publications, SPIJ intend to organized special issues on more focused 
topics. Each special issue will have a designated editor (editors) – either member of the editorial 
board or another recognized specialist in the respective field. 
 
This journal publishes new dissertations and state of the art research to target its readership that 
not only includes researchers, industrialists and scientist but also advanced students and 
practitioners. The aim of SPIJ is to publish research which is not only technically proficient, but 
contains innovation or information for our international readers. In order to position SPIJ as one of 
the top International journal in signal processing, a group of highly valuable and senior 
International scholars are serving its Editorial Board who ensures that each issue must publish 
qualitative research articles from International research communities relevant to signal processing 
fields. 
   
SPIJ editors understand that how much it is important for authors and researchers to have their 
work published with a minimum delay after submission of their papers. They also strongly believe 
that the direct communication between the editors and authors are important for the welfare, 
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper 
submission to paper publication are controlled through electronic systems that include electronic 
submission, editorial panel and review system that ensures rapid decision with least delays in the 
publication processes.  
 
To build its international reputation, we are disseminating the publication information through 
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, 
ScientificCommons, Docstoc and many more. Our International Editors are working on 
establishing ISI listing and a good impact factor for SPIJ. We would like to remind you that the 
success of our journal depends directly on the number of quality articles submitted for review. 
Accordingly, we would like to request your participation by submitting quality manuscripts for 
review and encouraging your colleagues to submit quality manuscripts for review. One of the 
great benefits we can provide to our prospective authors is the mentoring nature of our review 
process. SPIJ provides authors with high quality, helpful reviews that are shaped to assist authors 
in improving their manuscripts. 
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Abstract 
 
Image denoising is an interesting inverse problem. By denoising we mean finding a clean image, 
given a noisy one. In this paper, we propose a novel image denoising technique based on the 
generalized k density model as an extension to the probabilistic framework for solving image 
denoising problem. The approach is based on using overcomplete basis dictionary for sparsely 
representing the image under interest. To learn the overcomplete basis, we used the generalized 
k density model based ICA. The learned dictionary used after that for denoising speech signals 
and other images. Experimental results confirm the effectiveness of the proposed method for 
image denoising. The comparison with other denoising methods is also made and it is shown that 
the proposed method produces the best denoising effect. 
 
Keywords: Sparse Representation, Image Denosing, Independent Component Analysis, 
Dictionary Learning.

 
 
1. INTRODUCTION 
Being a simple inverse problem, the denoising is a challenging task and basically addresses the 
problem of estimating a signal from the noisy measured version available from that. A very 
common assumption is that the present noise is additive zero-mean white Gaussian with 

standard deviation σ . In this paper, we only consider the contaminated source, noise, of natural 
images. In other words, the purpose of image denoising is to restore the original image with 
noise-free. This problem appears to be very simple however that is not so when considered under 
practical situations, where the type of noise, amount of noise and the type of images all are 
variable parameters, and the single algorithm or approach can never be sufficient to achieve 
satisfactory results.  
 
Many solutions have been proposed for this problem based on different ideas, such as statistical 
modeling [1], spatial adaptive filters, diffusion enhancement [2], transfer domain methods [3,4], 
order statistics [5], independent component analysis (ICA) and standard sparse coding (SC) 
shrinkage proposed by Alpo Hyvärinen in 1997 [6,7], and yet many more. Among these methods, 
methods based on sparse and redundant representations has recently attracted lots of attentions 
[8]. Many researchers have reported that such representations are highly effective and promising 
toward this stated problem [8]. Sparse representations firstly examined with unitary wavelet 
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dictionaries leading to the well-known shrinkage algorithm [5]. A major motivation of using 
overcomplete representations is mainly to obtain translation invariant property [9]. In this respect, 
several multiresolutional and directional redundant transforms are introduced and applied to 
denoising such as curvelets, contourlets, wedgelets, bandlets and the steerable wavelet [5,8]. 
 
Moreover, the Ref. [10] gave an important conclusion: when ICA is applied to natural image data, 
ICA is equivalent to SC. However, ICA emphasizes independence over sparsity in the output 
coefficients, while SC requires that the output coefficients must be sparse and as independent as 
possible. Because of the sparse structures of natural images, SC is more suitable to process 
natural images than ICA. Hence, SC method has been widely used in natural image processing 
[10,11]. 
 
The now popular sparse signal models, on the other hand, assume that the signals can be 
accurately represented with a few coefficients selecting atoms in some dictionary[12]. Recently, 
very impressive image restoration results have been obtained with local patch-based sparse 
representations calculated with dictionaries learned from natural images [13,14]. Relative to pre-
fixed dictionaries such as wavelets [1], curve lets [15], and band lets [16], learned dictionaries 
enjoy the advantage of being better adapted to the images, thereby enhancing the sparsity.  
 
However, dictionary learning is a large-scale and highly non-convex problem. It requires high 
computational complexity, and its mathematical behavior is not yet well understood. In the 
dictionaries aforementioned, the actual sparse image representation is calculated with relatively 

expensive non-linear estimations. Such as 1l  or matching pursuits [17,18]. More importantly, as 

will be reviewed, with a full degree of freedom in selecting the approximation space (atoms of the 
dictionary), non-linear sparse inverse problem estimation may be unstable and imprecise due to 
the coherence of the dictionary [19].  
 
Structured sparse image representation models further regularize the sparse estimation by 
assuming de- pendency on the selection of the active atoms. One simultaneously selects blocks 
of approximation atoms, thereby reducing the number of possible approximation spaces [20,21]. 
These structured approximations have been shown to improve the signal estimation in a 
compressive sensing context for a random operator. However, for more unstable inverse 
problems such as zooming or deblurring, this regularization by itself is not sufficient to reach 
state-of-the-art results. Recently some good image zooming results have been obtained with 
structured sparsity based on directional block structures in wavelet representations [19]. 
However, this directional regularization is not general enough to be extended to solve other 
inverse problems.  
 
In this paper we show that the over complete basis dictionary which learning by using the ICA 
probabilistic technique can capture the main structure of the data used in learning the dictionary, 
which used to represent the main component of the image. The results show that our technique is 
as the state-of-the-art in a number of imaging inverse problems, at a lower computational cost. 
The paper is organized as follows. In sections 2 and 3, we briefly introduce ICA and sparse 
representation. In section 4, we briefly present modeling of the scenario in decomposing a signal 
on an overcomplete dictionary in the presence of noise and discuss our algorithm in the real 
image denoising task. In section 5, we discuss the results of using our algorithm in image 
denoising. At the end we conclude and give a general overview to future’s work. 
 

2. INDEPENDENT COMPONENT ANALYSIS 
Independent Component Analysis (ICA) is a higher order statistical tool for the analysis of 
multidimensional data with inherent data addictiveness property. The noise is considered as 
Gaussian random variable and the image data is considered as non-Gaussian random variable. 
Specifically the Natural images are considered for research as they provide the basic knowledge 
for understanding and modeling of human vision system and development of computer vision 
systems. 
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 In Gaussian noise, each pixel in the image will be changed from its original value by a (usually) 
small amount. A histogram, a plot of the amount of distortion of a pixel value against the 
frequency with which it occurs, shows an estimation of the distribution of noise. While other 
distributions are possible, the Gaussian (normal) distribution is usually a good model, due to the 
central limit theorem that says that the sum of independent noises tends to approach a Gaussian 
distribution. The case of Additive White Gaussian Noise (AWGN) will be considered. The 
acquired image is expressed in this case in the following form: 
 
 x s n= +  (1) 

 
where x  is the observed/acquired image, s  is the noiseless input image and n  is the AWGN 

component. 
 
Estimating x requires some prior information on the image, or equivalently image models. 
Finding good image models is therefore at the heart of image estimation. 
 
Some ICA algorithm such as FastICA [6] can be extended to overcomplete problems [22]. 
 
In information-theoretic ICA methods [23,24] statistical properties (distributions) of the sources 

are not precisely known. The learning equation 
1( )W A y Wx

−≅ =  has the form: 

 

  ( 1) ( ) [ { ( ) }] ( )T
W W I E x x Wη ϕ+ = + −k k  k  (2) 

 
where is the score function by obtain from: 
 

 
1

( )( )i
i

i i

dp

p dx
ϕ

−
=  (3) 

 

The unknown density functions ip  can be parameterized, as Generalized K Density (GKD), 

which is characterized by the following probability density function [25] 

 

 
1

2 2 2

exp ( )
( | , , )

1

k
x x

p x k
k x

α ααβ β
α β

β α

− −
=

+
 (4) 

 

where the generalized exponential function exp ( )k x  given by 

 

 

1

2 2exp ( ) ( 1 )k
k

x k x kx= + +  (5) 

 

where 0α > is a shape parameter, 0β >  is a scale and [0,1)k ∈  measures the heaviness of 

the right tail.  
 
The ICA algorithm in the framework of fast converge Newton type algorithm, is derived using the 
parameterized generalized k distribution density model. The nonlinear activation function in ICA 
algorithm is self-adaptive and is controlled by the shape parameter of generalized k distribution 
density model. To estimate the parameters of such activation function we use an efficient method 
based on maximum likelihood (ML). If generalized k probability density function is inserted in the 
optimal form for score function the expression for flexible nonlinearity is obtained:  
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The maximum likelihood estimators (MLEs) [26,27]  is 
 

 

1

2 2 2
1 1

exp( )
( / , , ) log ( / , , ) ( )

1
i

N N
N i i

x i

i i
i

x x
L x k p x k

k x

α αβ
α β α β αβ

β α

−

= =

−
= =

+
∏ ∏  (7)  

 
Normally, ML parameter estimates are obtained by first differentiating the log-likelihood function 
in equation(7) with respect to the generalized k-distribution parameters and then by equating 
those derivatives to zero (e.g. see [28]). Instead, here we choose to maximize the ML equation in 
equation (7) by resorting to the Nelder-Mead (NM) direct search method [27] . The appeal of the 
NM optimization technique lies in the fact that it can minimize the negative of the log-likelihood 
objective function given in equation (7) essentially without relying on any derivative information. 
Despite the danger of unreliable performance (especially in high dimensions), numerical 
experiments have shown that the NM method can converge to an acceptably accurate solution 
with substantially fewer function evaluations than multi-directional search or steeps descent 
methods [27]. Good numerical performance and a significant improvement in computational 
complexity for our estimation method are also insured by obtaining initial estimates from the 
method of moments. Therefore, optimization with the NM technique to produce the refined ML 

shape estimates α̂  and k̂ can be deemed as computationally efficient. Also, an estimate for 

parameter β̂ can be calculated for known α̂  and k̂  

 

 

1 1 1
( ) ( )

1 2 2ˆ
1 12

( )
2 2

k a

k
k

k a

α

αβ
α

 
Γ Γ − 

=  
 + Γ +
 

 (8) 

 
 

3. SPARSE REPRESENTATION AND DICTIONARY LEARNING 
Sparse representations for signals become one of the hot topics in signal and image processing 

in recent years. It can represent a given signal 
nx R∈ as a linear combination of few atoms in an 

overcomplete dictionary matrix 
n kA ×∈�   that contains k atoms { }

1

k

i i
a

=
  (k>n).  The 

representation of x may be exact x As=  or approximate, x As≈ ,satisfying || ||
p

x A s ε− ≤ , 

where the vector s  is the sparse representation for the vector x .To find s  we need to solve 

either  
 

 ( )0 0
min

s
P s x As=  subject to   (9) 

Or 

 ( )0, 20
min ||

s
P s x Asε ε− ≤  subject to  ||   (10) 
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where
0
is the 0l  norm, the number on non-zero elements.  

 
In this paper we use an ICA based algorithm to learn the basis of an overcomplete dictionary. 
Like the known K-SVD algorithm but instead of using the SVD decomposition for dictionary atoms 
update we used the FastICA algorithm with nonlinearity from the Generalized K Distribution for 
sparse representation for the data matrix. Also we choose the Gabor dictionary as an initial 
dictionary. 

 
4. ICA FOR OVERCOMPLETE DICTIONARY LEARNING 
ICA can be efficient in dictionary learning. Because ICA is most often applied for solving 
instantaneous Blind Source Separation (BSS) problem: 
 

, ,sN M N T
x As A R R

× ×= ∈ ∈         (11) 

 
Classical ICA methods solve complete (determined and over-determined) BSS problems: 

M N≤ . That was one of the main arguments against using ICA for dictionary learning. 

Overcomplete dictionary is of practical interest because results in denoising can be better when 
dictionary is overcomplete (a frame). 
 
In comparison with the probabilistic framework to basis learning in [29], that in partis also based 
on the use of ICA, the use of ICA proposed here is motivated by two reasons: 
 

1. It extends the probabilistic framework to learn the overcomplete basis, this is achieved 
through the use of the FastICA algorithm, [12], that works in sequential mode. 
 

2. In regard to the probabilistic framework to basis learning presented in [29], the adopted ICA 
approach is more flexible, this is due to the fact that proper selection of the nonlinear 
functions (that are related to parameterized form of the probability density functions of the 
representation) enables basis learning that is tied with a representation with the pre-
specified level of sparseness without affecting the structure of the basis learning equation 
(by ICA the basis inverse is actually learned). 

 
As opposed to that, in the Bayesian paradigm to the basis learning presented in [29], the 
structure of the basis learning equation depends on the choice of what was previously imposed 
on the probability density function of the sparse representation coefficients. We suppose that the 

linear model y D x=  is valid; where y  and x are random vectors (we interpret columns of the 

data matrix Y , denoted as iy , as realizations of y ), and D  is the basis matrix we want to 

estimate. For now we consider only the complete case ( D  is a n n×  square matrix, and y and 

x  are n dimensional).Hence, the basis D  is what in blind source separation is referred to as a 

mixing matrix. Extraction of the code matrix X  (also referred to as a source matrix in blind 
source separation) can be performed by means of the ICA algorithms. 
 
Herein, we are interested in the ICA algorithm that: 
 

1. Can be casted into the probabilistic framework tied with the linear generative model as 
in[29]. 
 

2. Can be extended for learning the overcomplete basis. 
 

When blind source separation problem, y D x=  , the minimization of the mutual information 

( )I x is used: 
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 1

1

( ) ( ) ( ) log det
n

i

i

I x H x H y D
−

=

= − −∑  (12) 

 
where ( )

i
H x stands for the differential entropy of the representation and (y)H  stands for the 

joint entropy of the data. 
 
The ICA algorithms that maximize information flow through nonlinear network (Infomax 

algorithm), maximize likelihood (ML) of the ICA model y D x=  , or minimize mutual information 

between components of 
1

x D y
−= , are equivalent in a sense that all minimize ( )I x and yield 

the same learning equation for 
1D −
. 

 

 
1 1 1( 1) ( ) [ ( ( ) ( ) ] ( )T

D i D i I x k x i D iη φ− − −+ ← + −  (13) 

 
If the generalized k probability density function is inserted in the optimal form for score function 
the expression for flexible nonlinearity is obtained by Equation (6).This enables learning the basis 

matrix D  that gives sparse representation for iy .For learning an overcomplete dictionary basis 

we used the FastICA algorithm with the nonlinearity obtained from the GKD. Thus, nonlinear 
function in the FastICA algorithm can be also chosen to generate sparse distribution of the 

representation ix . In the experiments we have used the nonlinearity comes from the GKD, 

which models sparse or super-Gaussian distributions. 
 
In the sequential mode of the FastICA, basis vectors are estimated one at a time. After every 
iteration, the basis vector is orthogonalized with respect to previously estimated basis vectors 
using the Gram-Schmidt orthogonalization. This idea can be extended to over complete case as 
follows: 

 
1

1

( )
i

T

i i i j j

j

d d d d dα
−

=

← − ∑  (14) 

and the dictionary updated using equation (13), where iφ  represents the score function defined 

as  equation(6). 
 

Reconstruction: reconstruct the denoised image �
1

x D y
−= . 

 

5. EXPERIMENTS AND RESULTS 
In this work, the underlying dictionary was trained with the new ICA technique, we used an 

overcomplete Gabor dictionary as an initial dictionary of size 64 256× generated by using Gabor 

filter basis of size 8 8× , each basis was arranged as an atom in the dictionary. The dictionary 

then learned and updated by using the proposed algorithm in section 4. We applied the algorithm 

to images, mainly of size 256 256×  and 512 512×  with different noise levels, "Lena" and 

“Barbra” images. The results showed that using the overcomplete dictionary learned by using the 
FastICA gave a good results. To evaluate our method we calculate the PSNR for denoised 
BARBRA and LENA images using our method, K-SVD method, and Clustered-based Sparse 
Representation (CSR) [30]. The comparison results between the three methods are shown in 
figure 1 and figure 2. The results of the overall algorithm for the images ”Barbara” and “Lena” for 

2
n  = 20 is shown in Table 1, as it is seen, when the level of noise grows, our approach 

outperforms K-SVD with OMP and CSR methods. We can conclude that the mentioned 
algorithms are suitably designed for noisy cased with known low energy. 
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FIGURE 1: From left to right: original image, noisy image with zero-mean white Gaussian noise of 
2

n  = 

20, the cleaned image via ICA based sparse representation described. 

 
 

 
FIGURE 2: From left to right: original image, noisy image with zero-mean white Gaussian noise of  

2
20n = , the cleaned image via ICA based sparse representation described. 

 

S
ig

m
a

 BARBARA LENA 

K-SVD 
ICA 

based 
CSR K-SVD 

ICA 
based 

CSR 

5 38.08 37.41 37.52 38.60 38.18 38.56 

10 34.42 34.51 34.35 35.52 35.42 35.38 

15 32.36 32.79 32.45 33.69 33.88 33.62 

20 30.83 32.02 30.94 32.38 33.46 32.56 

25 29.62 31.05 30.02 31.32 32.72 31.47 

 
TABLE 1: The PSNR computed for Barbra image and Lena image with different noise variance level 

(sigma). 
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6. DISCUSSION AND CONCLUSION 
ICA-learned dictionary yields good or favorable results when compared against other methods. 
Yet, the ICA-based dictionary learning is faster than those by competing methods. It appears that 
ICA-learned dictionary is less coherent than the dictionary learned by K-SVD and the sparsity 
based structural clustering (CSR) on the same training set. 
 
In this paper a simple algorithm for denoising application of an image was presented leading to 
state-of-the-art performance, equivalent to and sometimes outperform recently published leading 
alternative. We addressed the image denoising problem based on sparse coding over an 
overcomplete dictionary. Based on the fact that the ICA can capture the most important 
component of real data, which implies on real images. We presented our algorithm, which used 
the technique of learning the dictionary to be suitable for representing the important component in 
the image by using the FastICA technique that uses the nonlinearity induced from the 
Generalized K Distribution (GKD) for updating the dictionary in the learning process. 
Experimental results show satisfactory recovering of the source image. Moreover, for our 
technique, the larger the noise level is, the better the effect on the denoising results is. 
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Abstract 
 
This paper describes a new method for designing low-pass differentiators that could be widely 
suitable for low-frequency signals with different sampling rates. The method is based on the 
differential property of convolution and the derivatives of B-spline bias functions. The first order 
differentiator is just constructed by the first derivative of the B-spline of degree 5 or 4. A high (>2) 
order low-pass differentiator is constructed by cascading two low order differentiators, of which 
the coefficients are obtained from the nth derivative of a B-spline of degree n+2 expanded by 
factor a. In this paper, the properties of the proposed differentiators were presented. In addition, 
we gave the examples of designing the first to sixth order differentiators, and several simulations, 
including the effects of the factor a on the results and the anti-noise capability of the proposed 
differentiators. These properties analysis and simulations indicate that the proposed differentiator 
can be applied to a wide range of low-frequency signals, and the trade-off between noise-
reduction and signal preservation can be made by selecting the maximum allowable value of a. 
 
Keywords: Low-pass Differentiator, B-spline, Finite-impulse Response (FIR), Digital Filters. 

 
 
1. INTRODUCTION 

Digital differentiators (DDs) have been applied in several areas, such as radar, sonar, 
communication systems and signal processing system [1-3]. In particularly, low-pass high-order 
DDs are utilized in biological and electrochemical signal processing etc [4, 5]. Since the signal 
values are known on discrete points because of sampling operation, difference approximation is 
usually used to design DDs [6]. However, differentiation could amplify the noises contaminating 
the signal, especially the high-frequency noises [4, 5, 7]. And the signals we need to study, such 

 
 

FIGURE 1: The frequency responses of the Savitzky-Golay digital differentiators (SGDDs) (―) and the 
corresponding ideal differentiators (---). (a) is the frequency response of the 2nd order SGDD by using 
fitting coefficients of fourth-order polynomials on 25 points, and (b) is the frequency response of the 4th 

order SGDD by using fitting coefficients of sixth-order polynomials on 35 points. 
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as biological and electrochemical signals, are mostly at low frequencies. Therefore, low-pass 
digital differentiators (LPDDs) have been to estimate the derivatives [5, 7, 8]. 
 
Many methods have been available for the design of LPDDs. Most of them focus on the first order 
differentiators [8-10], which cannot directly obtain the high order derivatives of the signals. The 
Savitzky-Golay digital differentiators (SGDDs) are generally used for smoothing and acquiring low 
or high order derivatives due to their low-pass characteristic and arbitrary lengths etc [5]. But 
there are several weak points for SGDDs. One hand, the filter length and the degree of fitting 
polynomials can be arbitrarily selected, which instead, makes it blind in selections. Although, 
recent researches have focused on adaptive extension of the SG approach [11-13], they may 
increase the complexity of the algorithm, and there is still a need for further researches and tests. 
On the other hand, the frequency responses of SGDDs have several ripples at high frequencies, 
and the frequency responses of even order SGDDs at ω = π are not zero (Figure 1), which may 
affect the results of SGDDs filtering the high-frequency noises [5, 14]. 
 
In order to meet the low-pass characteristic and apply to different types of signals, we propose a 
method for designing LPDDs based on B-splines by using the differential property of convolution. 
B-splines have been widely used in data smooth because of their explicit formulae and Gaussian-
like waveforms [15, 16]. Moreover, the derivatives of B-spline bias functions are continuous and 
easily obtained. Consequently, B-splines have been used to calculate the derivatives of the gray 
of the image [15, 17]. However, they have not been widely used to obtain the derivatives of 
sampled signals. 
 
The aim of this study, therefore, was to propose a method for designing any order LPDDs, which 
were simple, flexible, easy to control and suitable for low-frequency signals with various sampling 
rates. In this paper, we first introduced the method of the designs of LPDDs. Then, several 
properties of the proposed LPDDs were summarized, and some computer simulations of various 
orders LPDDs, acting on the input testing signals produced by a Gaussian function in different 
ways, were also presented. 

 
2. THEORIES 

2.1 Background 
Let βm denote the mth order central B-spline function that can be generated by repeated 
convolutions of a B-spline of degree 1 

)()()( 11-mm ttt βββ ∗=  (1) 

where β1(t) is the indicator function in the interval [-1/2, 1/2], and the derivatives of central B-
splines can be obtained in a recursive fashion based on the following property [15, 18]: 
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If f(t) denotes a continuous signal, and βm(t/a) is the B-spline of degree m expended by factor a, 
the convolution between f(t) and the nth derivative of βm(t/a) could be written as:  
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which is based on the differential property of convolution. The B-spline functions become more 
and more Gaussian-like with the degree m increasing [15], and therefore the convolution between 
f(t) and βm(t/a) is really to smooth f(t) by βm(t/a) in (3). Accordingly, W(t) could be taken as the 
dilation of the nth derivative of f(t) smoothed by βm(t/a).  
 
When the signal f(t) is sampled once every T seconds, (3) could be written as:  
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where T is the sampling interval, i represents the sample number, and jT = t. Since βm(kT/a) is the 
discrete representation of βm(t/a), the discrete Fourier transform of the sequence {βm(kT/a)} and 
the corresponding nth derivative are respectively defined as Φm(e

jω
) and Um,n(e

jω
). Figure 2 shows 

the frequency responses of Φm(e
jω

) depending on the values of a and m. When a and m increase, 
the 3 dB cut-off frequency decreases, and the effect of low-pass filtering tends to be more 
noticeable. In Appendix A, we prove that the 3 dB cut-off frequency fc of Φm(e

jω
) is independent of 

sampling frequency when a and m are constants. Moreover, for a given B-spline of degree m, the 
relationship between fc and a displays as following (see Appendix B):  

 
mc faf =⋅  (5) 

where the value of fm is only determined by the degree of the B-spline bias function. According to 
(3), we also know that the 3 dB cut-off frequency of differentiators designed by β

(n)
m(t) is actually 

the 3 dB cut-off frequency fc of Φm(e
jω

). 

 
2.2 The Designs of LPDDs 
(3) tells us how to obtain the nth derivative of a signal. Obviously, a B-spline of high degree can 
well smooth the signal f(t) by convolution. However, it may filter some useful information 
contained in the signal, and need larger computations at the same time. To make the 
differentiators easy and avoid complicated computations, we design the LPDDs by cascading two 
low order differentiators.  
 
Usually, the nth derivative of a B-spline of degree n+2 comprises of piecewise linear polynomials 
(see Appendix C), which could construct each of the two low order differentiators. Table 1 shows 
the designs of the 2nd to 6th order differentiators by cascading two low order differentiators, and 
the first order differentiator is just constructed by the first derivative of the B-spline of degree 5 or 
4. In the progress of the algorithm implementation, f(t) is convoluted with the coefficients of the 
two low order differentiators by using the associative property of convolution as shown in (6). 

 
 

FIGURE 2: The frequency responses of Φm(e
jω

) for different values of factor a and degree m when the 
sampling frequency is 200 Hz. 
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Although it seems like that the two consecutive convolution operations increase the 
computational cost, the convolution operations between f(t) and the two low order differentiators 
avoids calculating the polynomial of high degree in t because the low order differentiator is 
constructed by piecewise linear polynomials. Moreover, different combinations of several low 
order differentiators could construct more high order LPDDs.  
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If {f(iT)} is the input sequence of a single differentiator of degree n, and {y[j]} is normalized output, 
the relationship between y[j] and f(iT) displays in (7).  
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where the value of a is usually a multiple of T, and N is the largest integer less than a∙m/(2T). In 
addition, (8) is derived by the convolution property. So the 3 dB cut-off frequency of the two 
cascading low order differentiators is just that of the differentiator constructed by β

(n1+n2)
 (m1+m2)(t), 

and is also equal to that of the filter constructed by the βm1+m2(t). By using (5), we get the 
corresponding equations of a and fc as shown in Table 1. 
 

The Order of 
Differentiators 

Designs of Differentiators The Relationship Between a and fc 
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TABLE 1: The designs of low-pass digital differentiators (LPDDs) and the relationship between the factor a 

and the 3 dB cut-off frequency fc of the corresponding B-spline filters. 

 
3. THE PROPOSED DIFFERENTIATORS 
3.1 Low-pass Characteristic 
Using (7) and (8), we obtain the frequency response of the differentiator of degree n (n = n1+n2).  
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As can be seen from Figure 3, the amplitude of Hn(e

jω
) is close to the frequency response of the 

ideal differentiator at low frequencies, and rapidly decays to zero with few ripples, making the 
differentiator filter high-frequency noises effectively. 
 
3.2 Flexible and Easy to Control 
The cut-off frequency is one of the key parameters of a filter. (5) and (8) indicate that the cut-off 
frequency of a proposed nth order differentiator is only determined by a. Knowing the effective 
frequency band of the sampled signal, we can use the equation of 3 dB cut-off frequency and a 
shown in Table 1 to obtain the maximum value of a, which is usually a multiple of T. 
 
3.3 Impulse Response Restriction 
If hn[i] denotes the impulse response sequence of a single differentiator of degree n, using (9) and 
(10), we derive  
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Obviously {hn[i]} is a finite-length sequence. If a nth order differentiator constructed by cascading 
two low order differentiators, of which degree are respectively n1 and n2, we can get the impulse 
response sequence  

 ][][][ 2121 ihihih nnnn ∗=+
 (12) 

 
 

FIGURE 3: The solid lines are the frequency responses of the proposed differentiators of degree 1 (a), 
degree 2 (b), degree 3 (c), degree 4 (d), degree 5 (e), and degree 6 (f) when the sampling frequency is 

200 Hz. The dotted lines are the those of the corresponding ideal differentiators. 
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Similarly, {hn1+n2[i]} is also a finite-length sequence. Therefore, the proposed differentiators based 
on B-splines are finite impulse response differentiators. This property is consistent with B-spline 
filters [15]. 

 
3.4 A Low-Complexity Algorithm 
According to (6), calculating the derivative of f(t) is just the discrete convolution between f(iT) and 
β

(n1)
m1(iT/a) without any other filtering algorithms. Moreover, the process of convolutions avoids 

calculating the polynomial of high degree in t, for β
(n1)

m1(iT/a) comprises of piecewise linear 
polynomials. 

 
3.5 A Flexible And Easy To Control Frequency Response Flatness At ω = 0 
The frequency response of the ideal full-band nth order DD is [9, 14]  

 ( )nj

FBn jeH ωω =)(  (13) 

As illustrated in Appendix D, the frequency response of the proposed differentiator of degree n 
satisfies the flatness constraints  
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which is consistent with the frequency response of the proposed differentiators close to the ideal 
DD at low frequencies as shown in Figure 3. 

 

4. SIMULATIONS AND EXPERIMENTS 
4.1 The Input Testing Signal 
Usually, the performance of a differentiator is evaluated by simulating Gaussian signals[5, 14, 19]. 
In our study, a Gaussian pulse function g(t) = exp(-50t

2
) sampled every 5 milliseconds, as 

depicted in Figure 4, was taken as the input testing signal. According to the Fourier transform of 
the input testing signal (Figure 4), we found that the frequency of the input signal containing the 
major components is maintained below 4 Hz. 
 
 
 
 
 
 
 

 
FIGURE 4: The input testing signal (a) and its Fourier transform (b). 
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Values of 
factor a 

The t value of 
the first peak 

the t value of the 
second peak 

The first zero-
crossing point 

The second zero-
crossing point 

4/200 -35/200 35/200 -20/200 20/200 

6/200 -36/200 36/200 -20/200 20/200 

7/200 -36/200 36/200 -21/200 21/200 

8/200 -36/200 36/200 -21/200 21/200 

9/200 -36/200 36/200 -21/200 21/200 

10/200 -37/200 37/200 -21/200 21/200 

12/200 -38/200 38/200 -22/200 22/200 
 
TABLE 2: The positions of characteristic points of the 2nd derivative waveform of the testing signal obtained 

by the proposed 2nd order differentiator. 
Note: the corresponding positions of characteristic points of the ideal 2nd derivative waveform of the input 

testing signal respectively are -35/200, 35/200, -20/200, 20/200. 
 

4.2 The Optimal Factor a 
The method of choosing optimal factor a was displayed by giving an example. Using table 1, we 
know that the maximum value of factor a is 9/200 when the 3 dB cut-off frequency of the 
proposed 2nd order differentiator is not less than 4 Hz. Figure 5a displayed the ideal second 
derivative of the input testing signal and the waveforms derived by the proposed second order 

 
FIGURE 5: (a)The ideal 2nd derivative (―) of the input testing signal, and the 2nd derivatives using the 
proposed 2nd order differentiator at different values of factor a; (b) The ideal 2nd derivative (―), the 2nd 

derivative of the input testing signal contaminated by Gaussian white noise using the 2nd order Savitzky-Golay 
digital differentiator (SGDD) (−∙), and the 2nd derivative using the 2nd order proposed differentiator (---). 
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differentiator at different values of factor a. Additionally, according to Table 2, we found that it 
could get good signal-preservation when a is not more than 9/200. 

 

4.3 The Anti-Noise Capability Of The Proposed Differentiators 
The anti-noise capability was evaluated by adding uncorrelated Gaussian white noise with signal-
to-noise ratio (SNR) = 28.5 dB to the input testing signal. The results derived by the proposed 
second order differentiator at factor a = 9/200 and the second order SGDD by using fitting 
coefficients of fourth-order polynomials on 69 points were compared. The 3 dB cut-off frequencies 
of the two differentiators were both about 4.2 Hz. As can be seen from Figure 5b, both the 
proposed differentiator and the SGDD could restrain the high frequency noises, and the proposed 
differentiator got a smoother waveform than the SGDD. 

 
4.4 The First To Sixth Derivatives Of The Input Signal 
Several derivative waveforms of the input testing signal are used to validate the feasibility of the 
proposed differentiators. Figure 6 displayed the first to sixth derivatives of the input testing signal 
obtained by the proposed differentiators at the maximum value of factor a. 

 

5. DISCUSSION 
This study has presented a new method for designing LPDDs based on B-splines, where some 
examples have been used to validate the reliability and the anti-noise capability of the proposed 

 
FIGURE 6: The first to sixth order derivatives of the input testing signal using the proposed 

differentiators (---), and corresponding ideal derivatives (―). 
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differentiators. The proposed differentiators have some good properties, making them have some 
advantages in obtaining the derivatives of input signals. One is that the value of a could be 
adaptively selected by calculating the maximum allowable value of a. Another is that the trade-off 
between noise-reduction and signal preservation can be made by selecting the maximum 
allowable value of a, when the 3 dB cut-off frequency of differentiators is equal to that of the 
sampled signal. In addition, the cut-off frequency of the proposed differentiators is independent of 
sampling rate. Therefore, the proposed differentiators could be applied to a wide range of low-
frequency signals. 
 
The value of factor a could be adaptively selected. According to the Fourier transform of the 
Gaussian function, the input testing signal components cover the entire frequency range [20]. The 
higher the frequency is, the fewer components of the signal are distributed. Most of the signal 
components are maintained below 4 Hz. Therefore, when the value of a is low, the proposed 
differentiator could preserve more information of the input testing signal because of its high 3 dB 
cut-off frequency (as shown in Figure 2). As a reaches the maximum allowable value, the 3 dB 
cut-off frequency of differentiators is equal to or close to the maximum significant frequency of the 
input signal. In this case, the differentiator could filter out more of the high frequency components 
of the input signal, which displays by the differences of amplitudes of peaks and troughs in the 
two waveforms (Figure 5a). However, the differences of the positions of peaks, troughs, and the 
zero-crossing are little (Table 2). This illustrates the proposed differentiators could preserve 
signal’s original features when a is not more than the maximum allowable value (Figure 6).  
 
Our differentiators could easily get the trade-off between noise-reduction and signal preservation. 
Numerous approaches of differentiators designs have previously been displayed. the SGDD is 
currently one of the most common differentiators, and also is a finite impulse response LPDD [5, 
12]. The SGDDs have many excellent properties [5, 21], but their frequency response have 
several ripples at high frequencies (Figure 1), which may affect the results of SGDDs filtering the 
high-frequency noises. By contrast, the frequency response of the proposed differentiators have 
few ripples (Figure 3), reducing almost all of the high-frequency noises. When a reaches the 
maximum allowable value, the proposed differentiator could get trade-off between noise-reduction 
and signal preservation. That explains the waveform derived by the proposed 2nd order 
differentiators is smoother than that of the 2nd order SGDD (as shown in Figure 5b). In addition, 
the only one key parameter of the proposed differentiator is the factor a, which directly 
determines the 3 dB cut-off frequency of differentiators. Then, using the equation between factor 
a and the 3 dB cut-off frequency, we could get the value of a according to the characteristics of 
the input signal. This makes the proposed differentiators flexible and easy to control, avoiding the 
work of selecting parameters of the SGDDs by testing [13]. 
 
This study proposed a easy method for designing high order LPDDs. There have been several 
studies on the designs of the first order LPDDs [23, 24]. However, high order LPDDs can only be 
constructed by cascading the first order LPDDs one by one in these studies. Therefore, the 
designed high order differentiators are very complicate. The proposed high order LPDD can be 
constructed by cascading only two low order LPDDs, and the coefficients of the differentiator can 
be easily acquired.  
 
Finally, it is important to note that the cut-off frequency of the proposed differentiator is 
independent of sampling rate according to (5). Consequently, our differentiators are not limited by 
the signals with a wide range of applications. In addition, further studies in reducing the transition 
band of the proposed differentiator are required to improve the anti-noise capability of the 
differentiator. 

 

6. CONCLUSION  
The primary goal of this paper is to introduce a method for designing any order LPDDs. Several 
examples of the designs of the first to sixth order differentiator and some simulations were 
presented to validate the feasibility of this method. All these properties analysis and simulations 
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indicate that the differentiators designed by the proposed method could be well suitable for 
different types of low-frequency signals, and the trade-off between noise-reduction and signal 
preservation could be made by selecting the maximum allowable value of a. But yet the behavior 
of the proposed differentiators needs to be tested in a wide range of situations, including the 
applications in reality. Further work also needs to concentrate on reducing the transition 
bandwidth to further improve the anti-noise capability of the proposed differentiators, especially 
for high order differentiators. 

 
7. APPENDIX 
7.1 Appendix A 
Let g[n] denote the discrete representation of βm(t)  

 )(][ Tnng m ⋅= β  (Α.1) 

where T designates the sampling period. The Fourier transform of βm(t) and the discrete 
transform of g[n] are  
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Now let fm, ωc respectively denote the 3 dB cut-off frequency of S(ω) and the normalized cut-off 
angular frequency of G(e

jω
).  
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Using (A.4) and (A.5), we can derive  

 Tf mc ⋅= πω 2  (Α.6) 

of which the corresponding ordinary frequency is 
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7.2 Appendix B 
The Fourier transform of βm(t/a) is given by  
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Let fc denote the 3 dB cut-off frequency of F(ω). Using (A.4), we derive  
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7.3 Appendix C 

 
Parameters Representations 

n = 1 
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TABLE 3: The representations of the nth derivative of b-spline bias functions of degree n+2. 

 
7.4 Appendix D 
Let Hn(e

jω
) denote the frequency response of the proposed differentiator of degree n that can be 

written as  
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where n is the value of n1 and n2 (n > 1), T is the sampling period. The nth derivative of βm(t) is 
derived by [22]  
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Setting m = m1 + m2, ω = 0, (D.3) becomes  
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And the nth derivative of Sn(ω) at ω = 0 is  
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Then we can get the frequency response of the proposed differentiator of degree n at ω = 0, as 
well as the nth derivative of Hn(e

jω
) from (D.1), (D.2), and (D.6). 
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