

INTERNATIONAL JOURNAL OF COMPUTER
SCIENCE AND SECURITY (IJCSS)

VOLUME 7, ISSUE 5, 2013

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 1985-1553

International Journal of Computer Science and Security is published both in traditional paper form

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJCSS Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND

SECURITY (IJCSS)

Book: Volume 7, Issue 5, December 2013

Publishing Date: 15 - 12 - 2013

ISSN (Online): 1985 -1553

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJCSS Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJCSS Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2013

EDITORIAL PREFACE

This is Fifth Issue of Volume Seven of the International Journal of Computer Science and
Security (IJCSS). IJCSS is an International refereed journal for publication of current research in
computer science and computer security technologies. IJCSS publishes research papers dealing
primarily with the technological aspects of computer science in general and computer security in
particular. Publications of IJCSS are beneficial for researchers, academics, scholars, advanced
students, practitioners, and those seeking an update on current experience, state of the art
research theories and future prospects in relation to computer science in general but specific to
computer security studies. Some important topics cover by IJCSS are databases, electronic
commerce, multimedia, bioinformatics, signal processing, image processing, access control,
computer security, cryptography, communications and data security, etc.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 7, 2013, IJCSS appears with more focused issues. Besides normal
publications, IJCSS intend to organized special issues on more focused topics. Each special
issue will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

This journal publishes new dissertations and state of the art research to target its readership that
not only includes researchers, industrialists and scientist but also advanced students and
practitioners. The aim of IJCSS is to publish research which is not only technically proficient, but
contains innovation or information for our international readers. In order to position IJCSS as one
of the top International journal in computer science and security, a group of highly valuable and
senior International scholars are serving its Editorial Board who ensures that each issue must
publish qualitative research articles from International research communities relevant to
Computer science and security fields.

IJCSS editors understand that how much it is important for authors and researchers to have their
work published with a minimum delay after submission of their papers. They also strongly believe
that the direct communication between the editors and authors are important for the welfare,
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper
submission to paper publication are controlled through electronic systems that include electronic
submission, editorial panel and review system that ensures rapid decision with least delays in the
publication processes.

To build its international reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJCSS. We would like to remind you that the
success of our journal depends directly on the number of quality articles submitted for review.
Accordingly, we would like to request your participation by submitting quality manuscripts for
review and encouraging your colleagues to submit quality manuscripts for review. One of the
great benefits we can provide to our prospective authors is the mentoring nature of our review
process. IJCSS provides authors with high quality, helpful reviews that are shaped to assist
authors in improving their manuscripts.

Editorial Board Members
International Journal of Computer Science and Security (IJCSS)

EDITORIAL BOARD

EDITOR-in-CHIEF (EiC)

Dr. Chen-Chi Shing
Radford University (United States of America)

ASSOCIATE EDITORS (AEiCs)

Associate Professor. Azween Bin Abdullah
Universiti Teknologi Petronas,
Malaysia

Dr. Padmaraj M. V. nair
Fujitsu’s Network Communication division in Richardson
Texas, USA

Dr. Blessing Foluso Adeoye
University of Lagos
Nigeria

Professor. Hui-Huang Hsu
Tamkang University
Taiwan

EDITORIAL BOARD MEMBERS (EBMs)

Professor. Abdel-Badeeh M. Salem
Ain Shams University
Egyptian

Professor Mostafa Abd-El-Barr
Kuwait University
Kuwait

Dr. Alfonso Rodriguez
University of Bio-Bio
Chile

Dr. Teng li Lynn
University of Hong Kong
Hong Kong

Dr. Srinivasan Alavandhar
Caledonian University
Oman

Dr. Deepak Laxmi Narasimha
University of Malaya
Malaysia

Assistant Professor Vishal Bharti
Maharishi Dayanand University
India

Dr. Parvinder Singh
University of Sc. & Tech
India

Assistant Professor Vishal Bharti
Maharishi Dayanand University,
India

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013

TABLE OF CONTENTS

Volume 7, Issue 5, December 2013

Pages

159 - 174 Resource Monitoring Algorithms Evaluation For Cloud Environment

Mostafa M. Al-Sayed, Shrerif M. Khattab, Fatma A. Omara

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 159

Resource Monitoring Algorithms Evaluation For Cloud
Environment

Mustafa M. Al-Sayed mostafamcs@gmail.com
Faculty of Computers and Information
Minia University
Minia, Egypt

Shrerif M. Khattab s.khattab@fci-cu.edu.eg
Faculty of Computers and Information
Cairo University
Cairo, Egypt

Fatma A. Omara f.omara@fci-cu.edu.eg
Faculty of Computers and Information
Cairo University
Cairo, Egypt

Abstract

Cloud computing is a type of distributed computing allowing to share many resources such as
CPU, memory, storage ...etc. The status of these resources changes from time to time due to the
dynamic adaptive ability of the cloud computing characteristics. Hence, the powerful and scalable
monitoring algorithm is needed to monitor the status of these resources throughout the time.
There are many models have been proposed for monitoring the distributed systems resources;
the push-based, the pull-based, and the push/pull model. Most of the common monitoring
systems are based on these models (e.g., Ganglia which based on push model and Nagios,
which based on pull model). According to the work in this paper, a comparative study has been
done to implement and evaluate these three models on the cloud environment. The
implementation results showed that the push-based model outperforms the other two models due
to its high scalability, stability, and efficiency.

Keywords: Cloud Computing, Resource Monitoring, Virtualization, Scalability.

1. INTRODUCTION

Recently, there is a rapid growth in the distributed computing system technologies. The main
feature of these technologies is that they can easily provide a large amount of computing power
and resources sharing [10]. Types of these systems are cluster, Grid and Cloud computing, which
are allowed to access large amounts of computing power in a fully virtualized manner, through
pool of resources and provide a single system view [7]. The main importance of these
technologies is to deliver the Information Technology (IT) resources as utility [7]. So, the Cloud
computing is a kind of new technology, and its main concept is to provide the services to the
users through “pay-as-you-go” manner [8]. Therefore, the accurate monitoring of the resources
which are consumed by the users is really importance issue because its effect on the system
performance.

On the other hand, the Cloud computing is considered more complicated due to its
heterogeneous and dynamic characteristics. Hence, the vital part of the Cloud computing system
is to monitor the characteristics and the existence of the resources, services, computations, and
other entities [1]. Therefore, the monitoring resources process is concerned with the collection of
these resources information, which can be useful to manage many problems, such as job

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 160

scheduling, load balancing, event predicting, fault detecting, and fault recovery in the cloud
computing, because the incorrect and unreal information would affect the performance of these
problems [2]. So, a monitoring scheme that can collect and analyze the dynamic information for
ensuring the stable participation of resources is needed. This monitoring scheme needs to be
changed dynamically in real time to monitor the correct state of the information and to reflect the
characteristics of the cloud resources [2]. When the time interval of the monitoring model is very
short, the overhead of collecting information would be increased. The monitoring model, however,
cannot keep a correct state of information in dynamic environments if the interval is very long [2].

There are many models have been proposed for monitoring the distributed systems resources;
the push-based, the pull-based, and the push/pull model. Most of the common monitoring
systems are based on these models (e.g., Ganglia which based on push model and Nagios,
which based on pull model). Unfortunately, there is no any comparative study has been done to
advice the most suitable to monitor resources on the Cloud environment among these three
models. According to the work in this paper, a comparative study has been done to implement
and evaluate these three models on the cloud environment. Based on the results of this study,
the most suitable model for monitoring the resources on the Cloud environments will be chosen
as the candidate model. In the future, this candidate model might be contributed to develop a new
consistent and efficient model.

The paper organization is; the background and the related works are presented in sections 2 and
3 respectively. The comparative study among three monitoring resources algorithms based on
the Push, the Pull, and the P&P models is presented in section 4. In section 5, The Performance
Evaluation is presented. The conclusions and future work are presented in section 6.

2. BACKGROUNDS
There are some monitoring systems that are used in the large scale systems and Cloud
computing environments. These monitoring systems can be classified into systems which based
on pushing data from its point of collection and those which based on pulling data. Also, these
systems can be classified into centralized and decentralized. The most common monitoring
systems are Ganglia, and Nagios. Nagios represents a centralized system which pulls data from
each monitored component. But, Ganglia is considered more decentralized and pushes data from
its point of collection [13].

On the other hand, Ganglia is an open source distributed monitoring system, which has a simple
hierarchal architecture, and depends on a multicast-based announce protocol to monitor the
states of hosts [14] [15]. Also, Ganglia uses technologies such as XML, RRDTool (Round Robin
Database), and XDR for data representation, data storage, and data transport, respectively.

Because of Ganglia characteristics, it satisfies high performance, robustness, good scalability,
and low per-node overheads [13]. Ganglia is a popular grid monitoring system, which runs over
500 clusters around the world, and has been ported to nine different operating systems, and six
CPU architectures [15]. Therefore, Ganglia monitoring system will be used as a criterion to
differentiate among three monitoring resources models (Push, Pull, and hybrid).

Many types of Grid monitoring systems adopted the principle of Grid Monitoring Architecture
(GMA) [16]. This principle contains three main roles; Producers (Working nodes), Consumers
(Master node), and Registers. The Producers generate status information of monitored resources
in its domain. The consumers use this information to solve many problems as mentioned above.
One main purpose of the registers is to facilitate Consumers and Producers to find each other.

There are two basic models for the Consumers and the Producers interaction; the Pull-based
model and the Push-based model [2]. In the Pull model, the Consumer pulls information from the
Producers to inquire status by sending a message to a producer in order to request resources
information. In the Push model, however, the Producers push the new resources’ status to the

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 161

consumer when any updates are occurred at a Producer, under some trigger conditions and
according to the decided policy by the cloud administrator based on the Service Level Agreement
(SLA), which is an agreement between the provider and the client. The Cloud monitoring entities
can also be modeled as Producers, Consumers, and Directory (locates producers and
consumers) [3].

In the Pull model, the resource information is required when it is needed [2]. The more nodes or
resources in cloud computing environment or any distributed environment, the greater overhead
on master node occurs due to the increasing number of requests [4]. If the pulling is implemented
depending on pull interval and this interval is small, this will cause high network consumption.
However, if the pull interval is large, this causes the loss of important updates during this large
interval. Hence, if the pull model has a high efficiency property, its consistency would be low [3].
So, a less transmission costs and a better efficiency would be obtained when the pull interval is
proper.

In the push model, resources status information is pushed by the producer to the consumer under
some trigger conditions. The Producer pushes the information of the current status of the
monitored resource, if this information is different than the previous information by a specific
value which called threshold [3]. The small threshold will cause a high transmission costs and the
transmission of unnecessary updates. The large threshold may cause the loss of an importing
updates. As the case in the threshold, the push interval time of the monitoring plays an important
role in the quality and the communication overhead of the push model. A short interval time for
pushing will increase the communication overhead of collecting information. A long interval time
may result in the loss important updates. Hence, if the push model has a high consistency, its
efficiency would be low [3]. So, a less transmission costs, a less network consumption, and a
better efficiency would be obtained from the proper push threshold and push interval time. This
keeps the consistency between the producer and the consumer.

A hybrid model, called Push-Pull (P&P), has been proposed [3]. The main features of the P&P
model are the combination of the advantages of Push-based and Pull-based models, where the
pushing deployed in the producer and the pulling deployed in the consumer and the two
procedures are run simultaneously [3]. The P&P would satisfy a better performance as a result of
its ability to switch between Push and Pull intelligently. The P&P model has been deployed to
monitor the resources in the Cloud computing environment. This is achieved by deploying Push
model on each working node and a Pull model on the master node. The two models run
simultaneously [3].

Generally, the Pull model depends basically on the interval time between pulls. This interval can
be static or dynamic by using one of forecasting methods to predicate the next pull interval. But
the push model depends either on push interval time between pushes, trigger conditions, or both.
Both models try to maximize the information precision with minimal network bandwidth
consumption. This would be achieved by choosing a proper time interval, and a proper threshold.
Although the Push, the Pull, and the P&P models are existed and implemented in the Grid and
Cluster computing systems, there is no any attempt has been introduced to compare the
performance of these models in the Cloud environment. In this paper, a comparative study has
been done to evaluate the pull, push, and hybrid models to stand on the main deference points
between these monitoring models.

3. RELATED WORKS
Foster, and et al [18] have concluded that Clouds and Grids share a lot Commonality in their
vision, e.g., architecture and technology, so most of the resource monitoring mechanisms and
platforms for Grid computing [19-23] have been customized for Cloud systems.

In an attempt to improve the Pull model and minimizing its updates, R. Sundaresan and et al [6]
have proposed a set of pull-based algorithms using historical time series of information returned

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 162

from the different resources to estimate the time of the next information update. One of the crucial
components of these algorithms is the estimator. They show that the different estimators, such as
simple moving average and Exponential Weighted Moving Average (EWMA) perform best in
different situations depending on a specific pattern of resource usage updates. This can be
adaptively tuned to maximize freshness.

In an attempt to minimize unnecessary and useless updating massages, and maximize the
consistency between the producer and consumer. Wu-Chun Chung and Ruay-Shiung Chang [5]
have proposed GRIR (Grid Resource Information Retrieval), which is considered a new algorithm
for resource monitoring in grid computing to improve Push model. They examined a set of data
delivery protocols for resource monitoring in the push-based model, such as the OSM (Offset-
Sensitive Mechanism) protocol, the TSM (Time-Sensitive Mechanism) protocol, and the hybrid
ACTC (Announcing with Change and Time Consideration) protocol. This hybrid protocol is based
on a dynamically adjusted update time interval and the consideration for early update when the
change is larger than a dynamic threshold.

Han Fang-Fang, Peng Jun-Jie, Zhang Wu, and et al [8] have proposed a periodically and Event-
driven Push (PEP) monitoring algorithm. This algorithm combines the advantages of the push
and event-driven mechanism and simplifies the communication between the consumer and the
producer without missing the important updating which would be happened during the push
interval. This algorithm does not take a lot of computing resources and provide more adequate
information.

Motivated by the complementary properties of Push model and Pull model, H. Huang and L.
Wang [3] have presented a hybrid resource monitoring algorithm for Cloud computing called
“P&P”. This algorithm is considered a combination of Push and Pull Models for resource
monitoring in the Cloud Computing Environment. The P&P model inherits the advantages of Push
and Pull models. It can intelligently switch between Push and Pull models and adjust the number
of updating according to the requirements of the users. This algorithm reduces the updating rate
and maintains various levels of coherence in accordance with the users’ requirements.

The resources monitoring model should be adaptive as much as possible in order to avoid a
negative impact of monitoring activities, and then provides an accurate and efficient resource
monitoring system. There are several studies have faced such issues by tuning the amount of
monitored resources and the monitoring frequency [24-28]. For instance, Park and et al. [24] have
proposed a monitoring algorithm based on Markov Chains to analyze and predict resource states,
in order to adaptively set a suitable time interval to push monitoring information. An adaptive
measurement algorithm has been proposed, to monitor resource usage patterns, where the past
measurement history are used to update the measurement frequency dynamically [17]. This
algorithm has relatively achieved accurate patterns and reduces monitoring overhead
considerably.

4. THE COMPARATIVE STUDY IMPLEMENTATION
According to the work in this paper, a comparative study has been done among three monitoring
resources algorithms, which are based on push model, pull model, and hybrid model. These three
algorithms are Announce with Change and Time Consideration (ACTC) algorithm which based on
the push model [5], the Adaptive Polling of Grid Resource Monitors using a Slacker Coherence
algorithm which based on the pull model [6], and the Pull-Push (P&P) algorithm which based on
the hybrid of push and pull models [3].

The evaluation parameters which are considered in this comparative study are [1] [4]:

- Efficiency; communication overhead measured as the number of updates, which are
exchanged among system components, per time unit. It must be as small as possible.

- Quality; a small delay when detecting a threshold crossing.

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 163

- Scalability; Quality degrades and communication overhead increases linearly with
increasing the system size.

- Low intrusiveness.

The implementation of the ACTC, the Adaptive Polling, and the P&P algorithms will be discussed
in details in the following sections.

4.1 The ACTC Monitoring Algorithm
The ACTC algorithm is based on push model and combined the advantages of the conditional
Announce-Absolute-Change (AAC) scheme [5] and Announce-Dynamic-Interval (ADI) scheme.
Along with the updating information based on the dynamic time interval (DTI), if the status
information change of one resource becomes larger than a dynamic threshold (d_threshold), the
change is updated immediately even if the timer has not expired. In Announce-Time-Interval
(ADI) scheme, the time interval of sending updating message to master node is adjusted based
on the moving average of time intervals between status information changes. Let T(0), T(1), …,
T(i) be the time when status of monitored resources changes. The Dynamic Time Interval (DTI) is
calculated as the following equation [5]:

 …… (1)

Where, NC is the number of changes, which is initialized by 0.

In the conditional Announce-Absolute-Change (AAC) scheme, the status information change is
announced to the master node only when the change between the current and previous value is
greater than a dynamic threshold (d_threshold), which is initialized to zero and is dynamically
calculated as the following equation [5]:

………… (2)

Where, NA is the number of announcements (updates) and AVCi = |Ai – Ai-1|, where A0, A1… Aj
represents the successive updates to the master node. Let d_threshold = 0, and A0=C0, where
C0, C1… Ci are the values of the monitored resource when status change occurs.

The ACTC algorithm is composed of the combination between the AAC, and the ADI algorithms
to become one algorithm. The pseudo code of this algorithm is depicted in Figure (1).

FIGURE 1: The pseudo code of the ACTC Algorithm which is based on the push monitoring model and is

composed of AAC and ADI algorithms.

1. ACTC_model(){
2. define list of successful_updates //to be used in calculating the d_threshold
3. while(true)
4. //--push based on dynamic threshold------
5. if (change_degree > d_threshold)
6. Update successful_updates list
7. d_threshold � get_Dynamic_Threshold(successful_updates);
8. DTI � get_Dynamic_Interval(successful_updates);
9. timer � DTI;
10. push current update to master node
11. //--push based on Dynamic time interval--
12. else if (is timer terminated?)
13. if (change_degree > MINThreshold)
14. Update successful_updates list
15. d_threshold � get_Dynamic_Threshold(successful_updates);
16. DTI � get_Dynamic_Interval(successful_updates);
17. timer � DTI;
18. push current update to master node
19. //end loop
20. }// end ACTC algorithm

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 164

According to The ACTC pseudo code, the ACTC algorithm runs as a probe at each Producer.
This algorithm monitors resources according to changes of status of the monitored resources
comparing with the previous statuses. The Producer will push an update to the Consumer, when
the timer terminated (line 12). This timer has been calculated, based on equation (1), from the
previous intervals of successive updates (lines 8, 16). Also, The Producer will push update, when
status information change became greater than d_threshold value (line 5), which is calculated
according to equation (2) as in lines (7, 15).

4.2 The Adaptive Polling Algorithm
The Adaptive polling algorithm, which has been explored by R. Sundaresan and et al [[4], is
based on the pull model. In this algorithm, the consumer polls the probe of Producer i after a time
interval ti. When the value of the received update from Producer i (status information) is greater
than the previous one with a significant amount, the master node will decrease the polling interval
to become ti*(1 – d), where d is the damping factor, beside a minimum limit to avoid extreme
situation. But, if there isn’t any significant change, the consumer will increase this interval to
become ti*(1 + d), beside a maximum limit to the polling interval. The pseudo code of this
algorithm is depicted in Figure (2).

FIGURE 2: The pseudo code of the Adaptive Polling Algorithm which is based on the pull monitoring model,
depending on the damping factor d.

At the termination of the poll interval time of Producer i (line 3); the Consumer will send a poll
message to this Producer (line 4). change_degree is used to decide if the change in the status is
significant or not (lines 5, 7) where change_degree is set based on the user requirements.

4.3 The Push-Pull Model (P&P) Algorithm
To inherit the complementary properties and the advantages of the Pull and Push models, H.
Huang and L. Wang [3] have proposed the P&P algorithm, which is considered an amalgamation
of Pull and Push models. The P&P model switches between the two models and adjust the
number of updating according to the users requirements. The switching between the Pull and the
Push models is based on the comparing of the change degree in status information of the
monitored resources with the users’ requirements as defined in the following equation:

Where, change_degree describes the change between the current status of Producer i, which is
defined as Pi and the last Status information that the consumer received, which is defined as Ci.
MAX and MIN represents the maximal and minimal possible value of the status.

This hybrid model depends basically on the user requirements, which is defined as UTD

1
. The

P&P algorithm has three possible cases based on the value of UTD [3]:

1- Dominating push-based when UTD is relatively small,

2- Dominating pull-based when UTD is relatively large, and

1
 The requirements of users are expressed by the concept of User Tolerant Degree (UTD)

1. adaptivePolling() {
2. while (true)
3. if (is Poll_interval terminated ?)
4. current_value � Send poll message to Producer i
5. if (|current_value - previous_value | > change_degree)
6. Poll_interval �Poll_interval * (1 - d)
7. else if (|current_value - previous_value | < change_degree)
8. Poll_interval �Poll_interval * (1 + d)
9. // end while loop

10. } // end adaptive Polling algorithm

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 165

3- None dominating when UTD is relatively moderate.

The P&P algorithm consists of P&P-Push algorithm and P&P-Pull algorithm. The pseudo code of
the P&P-Push and P&P-Pull algorithms are depicted in Figures (3, 4) respectively. The
P&P_Push algorithm runs at the Producer and the P&P-Pull algorithm runs at the Consumer
concurrently in a mutually exclusive manner

2
. The two algorithms will be switched between Push

and Pull according to UTD value and status information changes of monitored resources.

When UTD approaches 1, the Pull operation dominates. Therefore, when UTD equals to 0, all
Pull operations are forbidden, and the P&P algorithm becomes pure Push model. Similarly, When
UTD approaches 0, the Push operation dominates. Therefore, when UTD equals to 1, all Push
operations are forbidden, and P&P model become pure Pull model [3]. Hence when UTD is
relatively moderate, none of Push and Pull dominates. This situation is just in the middle of the
above two cases, and both Push and Pull methods act frequently.

FIGURE 3: The pseudo code of P&P_Push Algorithm which runs at the Producer part.

FIGURE 4: The pseudo code of P&P_Pull Algorithm which runs at the Consumer part.

5. THE PERFORMANCE EVALUATION
The implementation of the Announce with Change and Time Consideration (ACTC), the Adaptive
Polling of Grid Resource Monitors using a Slacker Coherence, and the Pull-Push (P&P)
algorithms is introduced.

2
 If Pull occurs, push was abandoned in the same period, and vice versa. This is achieved by setting

isPushed and isPulled identifiers to be mutual exclusive.

1. P&P_Pull() {
2. while (true)
3. foreach producer in master_domain
4. Set Push operation identifier isPushed � false
5. waiting for Pull_interval
6. If isPushed equals to true during Pull_interval
7. update current status information (current_value)
8. else
9. isPulled � true
11. current_value � Send poll message to Producer i
10. change_degree�|current_value - previous_value|/(MAX - MIN)
11. if (change_degree ≤ UTD)
12. Pull_interval �Pull_interval + increased_Pull_interval
13. else
14. Pull_interval � Pull_interval - decreased_Pull_interval
15. if (Pull_interval > PULL_INTERVAL_MAX)
16. Pull_interval � PULL_INTERVAL_MAX
17. if(Pull_interval < PULL_INTERVAL_MIN)
18. Pull_interval � PULL_INTERVAL_MIN
19. previous_value � current_value
20. //end while
}// end P&P_Pull operation

1. P&P_Push(){

2. while(true)

3. set Pull operation identifier isPulled � false

4. waiting for the termination of the Push_interval

5. if isPulled equals to true during Push_interval

6. push current update to master node

7. else if(| current_value - previous_value | / (MAX - MIN) ≥ UTD)

8. isPushed � false

9. push current update to master node

10. //end while

11. } //--end P&P_Push algorithm----

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 166

5.1 The Implementation Environment
In our experimental environment, two PCs are used to build a private cloud computing
experimental platform, which include PC as master node (the Consumer Pc) and PC as working
node (the producer PC). The Consumer and the Producer PCs are connected together using
10/100Mbps Desktop Switch. The two PCs are installed on Linux operating systems by using
Ubuntu 11.10 with Linux kernel 3.0 and open source opennebula3 [11], which is used as a cloud
computing platform. The Consumer PC is equipped with a Genuine Intel(R) Core(TM) 2 Duo CPU
2.0 GHz with 2.0 GB memory, and the Producer PC is equipped with a Genuine Intel(R)
Core(TM) Duo CPU 1.83 GHz with 1.0 GB memory. The monitoring programs for these
algorithms are written by using C/C++ language. Also, the multithreading programming and
socket programming with C/C++ language are used. There are many resource parameters, which
can be used to measure resource status, such as CPU, physical memory, virtual memory, disk
space and network equipment data. These parameters can be obtained from the "/ proc" file in
the system documents [9]. To simplify the experiments, only one of these resource parameters,
i.e. the CPU load percentage, is used to evaluate the performance of the three monitoring
algorithms. To evaluate the performance metrics of these monitoring algorithms, the data is
gathered through two hours. This data has been used as a constant input to the monitoring
algorithms. The gathered data patterns about CPU usage through two hours are shown in Figure
(5).

On the other hand, high accuracy and low intrusiveness are considered important metrics for
distributed monitoring systems [1]. Also, efficiency, quality, scalability, and robustness are
considered the main goals of any resource monitoring protocol which should be achieved at any
large distributed system [4]. So, the Implementation results of the three monitoring algorithms will
be analyzed and evaluated based on these parameters.

FIGURE 5: the actual usage percentage of the CPU measurements which is gathered for about two hours.

5.2 Evaluation Metrics
To evaluate the performance the three monitoring algorithms, two metrics are used. The First
metric has been used to evaluate the accuracy caused by each algorithm. This metric called
Standard Deviation (SD). The value of this metric has been calculated by using the following
equation:

3
OpenNebula.org is an open-source project developing the industry standard solution for building and

managing virtualized enterprise data centers and IaaS clouds.

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 167

Where A1, A2, …, AN and G1, G2, …, GN are the points on the graph of the actual measurements
and the graph of the Generated measurements respectively. Note that when the generated graph
exactly matches the actual graph, SD is zero. The second metric has been used to evaluate the
communication overhead caused by each algorithm. This metric called Overhead. The value of
this metric has been measured by using the following equation:

Overhead = no. of updates to Consumer + no. of poll messages from Consumer … (5).

In the case of pure push algorithms, number of the poll messages equal to zero.

5.3 The Experimental Results
Three groups of experiments have conducted in our environment. The first experiment has been
done to compare accuracy, consistency, and the communication overhead of the three monitoring
algorithms. This group of experiments has been simulated by using a standard input file, which
contains 7210 actual CPU measurements which have been collected every second from the PC
which was subjected to a mixture of workload during two hours). The actual and the generated
measurements of the monitoring algorithm have been used for calculating SD metric as shown in
equation (4).

To avoid runaway events in extreme situations, the upper and lower limit factors of the three
monitoring algorithms have been defined [3]. These factors are push/pull intervals, and the
threshold (change degree between the current value and its previous). Three seconds has been
set as a minimum push/pull interval, 12 seconds as a maximum push/pull interval, 10% as a
minimum threshold, and 40% as a maximum threshold. Also, a damping factor of 25% is used in
the case of the adaptive polling algorithm and 10% as a moderate change degree for UTD factor
in the P&P algorithm.

The second group of experiments has been done for comparing the accuracy, the consistency,
and the communication overhead of the three monitoring algorithms to Ganglia monitoring system
as a criterion. To conduct this group of experiments, both gmond and gmetad have been run on
the Producer PC to monitor the resources of this PC and the Consumer PC to obtain data from
the gmond, respectively. The Producer PC hosted a simple LAMP server and ran Wordpress
which was subject to a minor load (for about 50 minutes; read every 5 seconds) using the Apache
JMeter load testing tool. The other three algorithms (ACTC, Adaptive polling, and P&P algorithm)
ran as mentioned before on the two PCs in the same time of running the gmond on the Producer
PC.

gmond and the three algorithms ran under the same circumstances. Thirty seconds has been set
as a maximum push/pull interval, 1% as a minimum threshold, and 40% as a maximum threshold.
Also, a damping factor of 25% is used in the case of the adaptive polling algorithm and 1% as a
moderate change degree for UTD factor in the P&P algorithm.

The third group of experiments has been conducted to evaluate the effect of increasing the
number of the Producers (physical/virtual machines) on the accuracy degradation degree, and
the communication overhead degree of the three algorithms. This effect has been evaluated
using small number of Producers (e.g., Two PCs with four Producers, and two virtual machines
(VM

4
), opennebula command line interface has needed to create VMs, delete VMs… etc [12])

and large number of the Producers (e.g., Two PCs with 300 Producers). Also, 1 sec is used as
updating period for the sensor of the producer PC. This sensor has continued to work about two
hours with 7,210 times of updating totally.

5.3.1 The Quality and the Efficiency Results
The factors that have a great effect on the quality and the communication overhead of the
concerned monitoring algorithms have been examined in the first group of the experiments. The

4
 VM with 1 GHz CPU and 256M memory.

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 168

implementation results of the first group of experiments for each algorithm will be discussed in
details in the following sections.

5.3.1.1 The ACTC Implementation Results
The quality and the communication overhead of the ACTC algorithm have been affected by
changing the minimum threshold. The minimum threshold causes the trade-off between the
quality and the communication overhead. As shown in Figures (6), the increasing of minimum
threshold degrades the quality, which has been represented by SD, sublinearly while the
communication overhead has been decreased.

FIGURE 6: The effect of Min threshold on (a) the Quality, which is represented by SD, and on (b) the
Communication Overhead of ACTC algorithm.

5.3.1.2 The P&P Implementation Results
The quality and the communication overhead of the P&P algorithm have been affected by the
value of the UTD. As shown in Figures (7), the increasing of the UTD degrades the quality
logarithmically but decreases the communication overhead (overhead ≈ 7210 / UTD

0.46
).

FIGURE 7: The effect of UTD on (a) the Quality, which is represented by SD, and on (b) the Communication
Overhead of P&P algorithm.

5.3.1.3 The Adaptive Polling Implementation Results
The quality of the adaptive polling algorithm hasn’t been affected by the value of the
change_degree as shown in Figure 8(a). On the other hand, changing the value of the
change_degree causes a great effect on the communication overhead at beginning and followed
by a constant performance as shown in Figure 8(b).

The damping factor (d) has a constant effect on the quality and the communication overhead
caused by this algorithm (see Figure (9)). But, the maximum pulling time interval has a

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 169

logarithmical effect on the quality as shown in Figure 10(a), and a power effect on the
communication overhead as shown in Figure 10(b).

FIGURE 8: The effect of Change_degree on (a) the Quality, which is represented by SD, and on (b) the
Communication Overhead of the adaptive polling algorithm.

FIGURE 9: The effect of the damping factor “d” on (a) the Quality, which is represented by SD, and on (b)
the Communication Overhead of the adaptive polling algorithm.

FIGURE 10: The effect of increasing the Max Time Interval on (a) the Quality, which is represented by SD,

and on (b) the Communication Overhead of the adaptive polling algorithm.

According to the implementation results, it is found that for each monitoring algorithm, a specific
factor would affect its quality and efficiency according to the monitoring way. Generally, the
implementation results indicate the following:

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 170

• The constant value of the Maximum Pulling Time Interval and the change degree
between the current and the previous monitored values have the main effect on the
Quality and the Efficiency of the Adaptive Polling algorithm, because the Adaptive Polling
has relied on the pulling time interval that changes increasingly or decreasingly based on
the value of the change degree.

• The constant value of the UTD has the greatest effect on the Quality and the
Communication Overhead of the P&P algorithm. This effect is due to both the P&P-Push
and P&P-Pull sections based on the UTD.

• The Quality and the Efficiency of the ACTC algorithm has been affected by the constant
value of the Minimum Threshold.

5.3.1.4 Monitoring Algorithms Evaluation
Two groups of experiments have been conducted to evaluate the accuracy and the efficiency of
these three algorithms. One of these groups has been conducted for comparing three algorithms
together using data set for two hours. Another group has been conducted by using Ganglia
monitoring system as a differential criterion.

As shown in Figure 11(a), after comparing three monitoring algorithms together, all the three
algorithms have a good quality, where their SD ranges from 4% for P&P to 10% for ACTC. This
means that the P&P algorithm has the best quality followed by the Adaptive Polling with 8% and
then the ACTC. The P&P algorithm has the highest quality, because it sends a large number of
updates to the Master node. But, the more updates are sent, the more communication overhead
is caused. So, the P&P has high communication overhead than the ACTC algorithm (see Figure
11(b)). Hence, the ACTC has a good quality, and the best efficiency.

FIGURE 11: Comparison of the three monitoring algorithms under the same circumstances in terms of (a)
the Quality, which is represented by SD, and (b) the Communication Overhead.

As shown in Figure 12(a), after comparing three monitoring algorithms together using Ganglia as
a differential criterion, the two algorithms (P&P and ACTC) have a good accuracy compared to
ganglia, where their SD is less than 10%. But, the Adaptive Polling algorithm achieved the worst
accuracy, where its SD is more than 15%. The P&P algorithm achieves a good quality, because it
sends a large number of updates to the Master node. But, the more updates are sent, the more
communication overhead is caused. So, the P&P has high communication overhead than the
ACTC algorithm (see Figure 12(b)). Hence, the ACTC algorithm has a good quality and a good
efficiency compared to ganglia and the other two algorithms (P&P and Adaptive Polling).

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 171

FIGURE 12: The performance evaluation of the three monitoring algorithms using Ganglia as a differential
criterion in terms of (a) the Quality, which is represented by SD, and (b) the Communication Overhead.

5.3.2 The Scalability Experimental Results
The third group of the experiments has been conducted to detect the relation between increasing
the number of the Producers and the quality degradation degree of three monitoring algorithms.
The first experiment of this group has been conducted in the small environment by running 1, 2,
3, and 4 Producer processes on one VM, two VMs, one PC and two VMs, and two PCs and two
VMs respectively. According to the results of this experiment, the communication overhead of
three algorithms has increased linearly by increasing the number of the Producer processes as
shown in Figure 13(a). Hence, the three algorithms are scalable algorithms with the small
environments.

The third experiment of this group has been conducted in the large environment by running 1, 50,
100, 300 Producer processes respectively on the Producer PC. According to the results of this
experiment, only the communication overhead of the ACTC algorithm has increased linearly by
increasing the number of the Producer processes. As shown in Figure 13(b), comparing with the
other two algorithms, the ACTC is the most scalable algorithm beside the stability of its quality
and accuracy. As shown in Figure 13(b), comparing with the other two algorithms, the ACTC is
the most scalable algorithm beside the stability of its quality and accuracy with any environment
(the small and the large environments).

FIGURE 13: The scalability of the three monitoring algorithms under the same circumstances in (a) A Small
environment and in (b) A large environment, which had a large number of Producers up to 300 Producers.

According to the evaluation results, the effect of increasing the number of the Producers’ updates
(total received updates by the Master node) is depicted by the following; the Adaptive polling and
P&P algorithms have an excellent degree of quality with the small numbers of the Producers. But,
this quality would be degraded with the large number of Producers, because the two algorithms

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 172

depend on pulling the status information from the Producer. In the pull, two messages are sent;
one message from Master to Producer and one from Producer to master. So, with the large
number of Producers, the network consumption will increase and the load on the Master will also
increase. Hence, the total number of missed updates will increase. But in the case of the ACTC
algorithm, the algorithm depends only on the push model, which sends the important updates
only. The Master node receives updates from the Producers without sending anything to them.
So the increasing the number of Producers won’t have a considerable effect on the load on the
Master node and this will decrease the communication overhead. Hence, the quality remains
stable.

According to the results of the first and the third group of the experiments, we can conclude the
following:
The most important characteristics of the ACTC algorithm are:

• The lack of intrusiveness; due to the lack of the pull operations,

• The high efficiency; due to the communication overhead increases sub-linearly with
increasing the resources to be monitored, while the quality and the accuracy stay
stable,

• The high scalability degree, and robustness; as, the ACTC algorithm continues to
work after adding or removing any Producer without failure.

The most important characteristics of the P&P and Adaptive Polling algorithms comparing to the
ACTC algorithm are:

• The intrusiveness; the P&P algorithm has a non-negligible degree of the
intrusiveness. But, the intrusiveness dominated in the case of the Adaptive Polling
algorithm.

• The low efficiency; due to the communication overhead and the network bandwidth
consumption increases nonlinearly with increasing the system size,

• The instable quality; with the large numbers of the resources.

• Scalable only with the small environments, and robustness; as the P&P algorithm
continues to work after adding or removing any Producer without failure.

According to the experiments results, it is found that the ACTC algorithm achieves the main goals
which should be achieved by any monitoring algorithm used for monitoring the resources in the
large distributed systems as mentioned in [4].

6. CONCLUSIONS AND FUTURE WORK
A comparative study has conducted to decide which of the three monitoring algorithms (ACTC,
Adaptive polling, and P&P algorithm) are the most suitable for the cloud computing and the large
distributed systems. The results show that the ACTC algorithm is the most suitable one, where it
achieves a good quality and efficiency degree compared to Ganglia monitoring system, and a
small communication overhead degree. Also, the ACTC algorithm is a scalable monitoring
algorithm due to the communication overhead increases sub-linearly while the quality doesn’t
change with increasing the system size. Also, we can conclude that the monitoring algorithms
that play good with the large distributed systems are the ones that based on the pure push model.
But, the monitoring algorithms, which based on the pull model, consume the bandwidth of the
network and increase the load on the Master node.

In the future work, the effect of increasing the history size of the updating series on the quality
degree of the ACTC algorithm and the network bandwidth consumption will be studied. Also,
introducing the Markov Chain model (MCM) as a predictor to improve the ACTC algorithm.
Finally, we plan to conduct these experiments in a large scale Cloud computing environment.

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 173

7. REFERENCES

[1] J. Brandt, A. Gentile, J. Mayo, P. Pebay, D. Roe, D. Thompson, M. Wong (May 2009),
“Resource Monitoring and Management with OVIS to Enable HPC in Cloud Computing
Environments,” 23

rd
 IEEE International Parallel & Distributed Processing Symposium (5th

Workshop on System Management Techniques, Processes, and Services). Rome, Italy, PP
1 – 8.

[2] J. Park, K. Chung, E. Lee, Y. Jeong, H. Yu (May 2010), “Monitoring Service Using Markov
Chain Model in Mobile Grid Environment,” the 5

th
 international conference on Advances in

grid and pervasive computing (GPC 2010). Hualien, Taiwan, PP 193-203.

[3] H. Huang, L. Wang (Jul 2010), “P&P: A Combined Push-Pull Model for Resource Monitoring
in Cloud Computing Environment,” 3

rd
 IEEE International conference on Cloud Computing

(CLOUD 2010). Miami, FL, PP 260 – 267.

[4] F. Wuhib, R. Stadler (2011). Distributed Monitoring and Resource Management For Large
Cloud Environments. KTH R. Inst. of Technol., Stockholm, Sweden. PhD Thesis.

[5] W. Chung, R. Chang (2009), "A New Mechanism For Resource Monitoring in Grid
Computing," Future Generation Computer Systems - FGCS 25, PP 1-7.

[6] R. Sundaresan, M. Lauria, T. Kurcy, S. Parthasarathy, J. Saltz (June 2003), “Adaptive
Polling of Grid Resource Monitors Using a Slacker Coherence Model,” The 12

th
 IEEE

International Symposium on High Performance Distributed Computing (HPDC’03). Seattle,
Washington, PP 260-269.

[7] Cloud Computing: Principles and Paradigms, Edited by R. Buyya, J. Broberg and A.
Goscinski © 2011 John Wiley & Sons, Inc.

[8] H. Fang-fang, P. Jun-jie, Z. Wu, L. Qing, L. Jian-dun, J. Qin-long, Y. Qin (Oct 2011), "Virtual
Resource Monitoring in Cloud Computing," Journal of Shanghai University, 15, PP 381-385.

[9] J. Ge, B. Zhang, Y. Fang (2010), "Research on the Resource Monitoring Model Under Cloud
Computing Environment," The International Conference on Web Information Systems and
Mining (WISM'10). Sanya, China, PP 111-118.

[10] B. S. Ghio, (March 2012). Project of a SDP prototype for Public Administrations and private
networks. Faculty of Mathematics, Physics and Natural Sciences, University of Genoa.
Master of Science in Information Technology.

[11] http://opennebula.org/about:about

[12] http://opennebula.org/documentation:archives:rel2.0:vm_guide.

[13] J. S. Ward & A. Barker (2012), “Semantic Based Data Collection for Large Scale Cloud
Systems”, DIDC '12 Proceedings of the fifth international workshop on Data-Intensive
Distributed Computing Date, New York, USA.

[14] Ganglia: http://ganglia.sourceforge.net.

[15] R. Bhatnagar & J. Patel (2013), "Performance Analysis of A Grid Monitoring System -
Ganglia." International Journal of Emerging Technology and Advanced Engineering 3(8):
362-365.

[16] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R. Wolski (August 2002),
“A Grid Monitoring Architecture,” The Global Grid Forum Draft Recommendation (GWD-Perf-
16-3).

Mustafa M. Al-Sayed, Sherif M. Khattab & Fatma A. Omara

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (5) : 2013 174

[17] M. Wu & X.H. Sun. (2006), “Grid harvest service: a performance system of Grid computing,”
Journal of Parallel and Distributed Computing, 66(10): 1322-1337.

[18] I. Foster, Y. Zhao, I. Raicu, and S. Lu. (2008), “Cloud computing and Grid computing 360-
degree compared”, Grid Computing Environments Workshop, Austin, TX, PP 1-10.

[19] M.L. Massie, B.N. Chun, and D.E. Culler (2003), “The ganglia distributed monitoring system:
design, implementation and experience,” Parallel Computing, 30(7): 817-840.

[20] Nagios, available in: http://www.nagios.org.

[21] H. Newman, I. Legrand, P. Galvez, R. Voicu, and C. Cirstoiu (2003), “MonALISA: a
distributed monitoring service architecture,” Computing in High Energy and Nuclear Physics
2003 Conference Proceedings (CHEP03), California, USA.

[22] A. Cooke, A.J.G. Gray, L. Ma, and W. Nuttetal (2003), “R-GMA: an information integration
system for grid monitoring,” Proceedings of the 11

th
 International Conference on

Cooperative, Information Systems, Catania, Sicily, Italy , PP 462–481.

[23] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G.L. Rubini, G. Tortone, and M.C. Vistoli
(2005), “GridICE: a monitoring service for grid systems,” Future Generation Computer
Systems 21(4): PP 559–571.

[24] J.S. Park, H.C. Yu, K.S. Chung, and E.Y. Lee (2011), “Markov chain based monitoring
service for fault tolerance in mobile cloud computing,” IEEE Workshops of International
Conference on Advanced Information Networking and Applications (WAINA), Biopolis , PP
520–525.

[25] G. Katsaros, R. Kübert, and G. Gallizo (2011), “Building a service-oriented monitoring
framework with REST and nagios,” IEEE International Conference on Services Computing
(SCC), Washington, DC, PP 426–431.

[26] S. Clayman, R. Clegg, L. Mamatas, G. Pavlou, and A. Galis (2011), “Monitoring, aggregation
and filtering for efficient management of virtual networks,” Proceedings of the 7th
International Conference on Network and Services Management, Paris, PP 1–7.

[27] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M. Wolf (2010), “Monalytics:
online monitoring and analytics for managing large scale data centers,” Proceedings of the
7th International Conference on Autonomic Computing, Ser. ICAC ‘10, ACM, New York, NY,
USA, PP 141–150.

[28] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, and M. Wolf (2011), “A flexible
architecture integrating monitoring and analytics for managing large-scale data centers,”
Proceedings of the 8th International Conference on Autonomic Computing, Ser. ICAC’11,
ACM, New York, NY, USA, PP 141–150.

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Computer Science and Security (IJCSS) is a refereed online journal
which is a forum for publication of current research in computer science and computer security
technologies. It considers any material dealing primarily with the technological aspects of
computer science and computer security. The journal is targeted to be read by academics,
scholars, advanced students, practitioners, and those seeking an update on current experience
and future prospects in relation to all aspects computer science in general but specific to
computer security themes. Subjects covered include: access control, computer security,
cryptography, communications and data security, databases, electronic commerce, multimedia,
bioinformatics, signal processing and image processing etc.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJCSS.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 7, 2013, IJCSS is appearing in more focused issues. Besides normal
publications, IJCSS intend to organized special issues on more focused topics. Each special
issue will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJCSS LIST OF TOPICS
The realm of International Journal of Computer Science and Security (IJCSS) extends, but not
limited, to the following:

CALL FOR PAPERS

Volume: 8 - Issue: 3

i. Submission Deadline : April 5, 2014 ii. Author Notification: May 5, 2014

iii. Issue Publication: May 2014

• Authentication and authorization
models

• Communications and data security

• Computer Engineering • Bioinformatics

• Computer Networks • Computer graphics

• Cryptography • Computer security

• Databases • Data mining

• Image processing • Electronic commerce

• Operating systems • Object Orientation

• Programming languages • Parallel and distributed processing

• Signal processing • Robotics

• Theory • Software engineering

CONTACT INFORMATION

Computer Science Journals Sdn BhD

 B-5-8 Plaza Mont Kiara, Mont Kiara

50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6204 5627

Fax: 006 03 6204 5628

Email: cscpress@cscjournals.org

