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EDITORIAL PREFACE 

 
The International Journal of Computational Linguistics (IJCL) is an effective medium for 
interchange of high quality theoretical and applied research in Computational Linguistics from 
theoretical research to application development. This is the Fourth Issue of Volume One of IJCL. 
The Journal is published bi-monthly, with papers being peer reviewed to high international 
standards. International Journal of Computational Linguistics (IJCL) publish papers that describe 
state of the art techniques, scientific research studies and results in computational linguistics in 
general but on theoretical linguistics, psycholinguistics, natural language processing, grammatical 
inference, machine learning and cognitive science computational models of linguistic theorizing: 
standard and enriched context free models, principles and parameters models, optimality theory 
and researchers working within the minimalist program, and other approaches.   
 
IJCL give an opportunity to scientists, researchers, and vendors from different disciplines of 
Artificial Intelligence to share the ideas, identify problems, investigate relevant issues, share 
common interests, explore new approaches, and initiate possible collaborative research and 
system development. This journal is helpful for the researchers and R&D engineers, scientists all 
those persons who are involve in Computational Linguistics. 
 
Highly professional scholars give their efforts, valuable time, expertise and motivation to IJCL as 
Editorial board members. All submissions are evaluated by the International Editorial Board. The 
International Editorial Board ensures that significant developments in image processing from 
around the world are reflected in the IJCL publications. 
 
IJCL editors understand that how much it is important for authors and researchers to have their 
work published with a minimum delay after submission of their papers. They also strongly believe 
that the direct communication between the editors and authors are important for the welfare, 
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper 
submission to paper publication are controlled through electronic systems that include electronic 
submission, editorial panel and review system that ensures rapid decision with least delays in the 
publication processes.  
 
To build its international reputation, we are disseminating the publication information through 
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, 
ScientificCommons, Scribd, CiteSeerX Docstoc and many more. Our International Editors are 
working on establishing ISI listing and a good impact factor for IJCL. We would like to remind you 
that the success of our journal depends directly on the number of quality articles submitted for 
review. Accordingly, we would like to request your participation by submitting quality manuscripts 
for review and encouraging your colleagues to submit quality manuscripts for review. One of the 
great benefits we can provide to our prospective authors is the mentoring nature of our review 
process. IJCL provides authors with high quality, helpful reviews that are shaped to assist authors 
in improving their manuscripts.  
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Abstract 

 
We report work on adding an improvisational AI actor to an existing virtual 
improvisational environment, a text-based software system for dramatic 
improvisation in simple virtual scenarios, for use primarily in learning contexts. 
The improvisational AI actor has an affect-detection component, which is aimed 
at detecting affective aspects (concerning emotions, moods, value judgments, 
etc.) of human-controlled characters’ textual “speeches”. The AI actor will also 
make an appropriate response based on this affective understanding, which 
intends to stimulate the improvisation. The work also accompanies basic 
research into how affect is conveyed linguistically. A distinctive feature of the 
project is a focus on the metaphorical ways in which affect is conveyed. 
Moreover, we have also introduced affect detection using context profiles. 
Finally, we have reported user testing conducted for the improvisational AI actor 
and evaluation results of the affect detection component. Our work contributes to 
the journal themes on affective user interfaces, affect sensing and 
improvisational or dramatic natural language interaction. 
 
Keywords: Affect detection, metaphorical language, intelligent conversational agents, dramatic 
improvisation and context profiles. 

 
 
1. INTRODUCTION 

In our previous work, we have developed online multi-user role-play software that could be used 
for education or entertainment. In this software young people could interact online in a 3D virtual 
drama stage with others under the guidance of a human director. In one session, up to five virtual 
characters are controlled on a virtual stage by human users (“actors”), with characters’ (textual) 
“speeches” typed by the actors operating the characters. A graphical interface on each actor’s 
and director’s terminal shows the stage and characters. Speeches are shown as text bubbles. 
Actors and the human director work through software clients connecting with the server. The 
actors are given a loose scenario around which to improvise, but are at liberty to be creative.  
 
The human director needs to constantly monitor the unfolding drama and the actors’ interactions, 
or lack of them, in order to check whether they are keeping to the general spirit of the scenario. If 
this is not happening, the director may then intervene. Director’s interventions may take a number 
of forms. Director may choose to send messages to actors or may introduce and control a bit-part 
character. This character may not have a major role in the drama, but can help to stimulate the 
improvisation. But this places a heavy burden on directors, especially if they are, for example, 
teachers and unpracticed in the directorial role.  
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One research aim is thus partially to automate the directorial functions, which importantly involve 
affect detection. For instance, a director may intervene when emotions expressed or discussed 
by characters are not as expected. Hence we have developed an affect-detection module. The 
module identifies affect in characters’ text input, and makes appropriate responses to help 
stimulate the improvisation. Within affect we include: basic and complex emotions such as anger 
and embarrassment; meta-emotions such as desiring to overcome anxiety; moods such as 
hostility; and value judgments (of goodness, etc.). Although merely detecting affect is limited 
compared to extracting full meaning, this is often enough for stimulating improvisation. The 
results of this affective analysis are then used to: (a) control an automated improvisational AI 
actor – EMMA (emotion, metaphor and affect) that operates a bit-part character (a minor 
character) in the improvisation; (b) drive the animations of the avatars in the user interface so that 
they react bodily in ways that is consistent with the affect that they are expressing, for instance by 
changing posture or facial expressions.  
 
Much research has been done on creating affective virtual characters in interactive systems. 
Indeed, Picard’s work [1] makes great contributions to building affective virtual characters. Also, 
emotion theories, particularly that of Ortony, et al. [2] (OCC), have been used widely in such 
research. Egges et al. [3] provided virtual characters with conversational emotional 
responsiveness. Aylett et al. [4] also focused on the development of affective behaviour planning 
for their synthetic characters. There is much other work in a similar vein. 
 
Emotion recognition in speech and facial expression has been studied extensively [5, 6]. But very 
little research work has made an attempt to dig out the affect flavour in human open-ended 
linguistic textual input in online role-play, although the first interaction system based on natural 
language textual input, Eliza, was first developed back in 1966. Thus there has been only a 
limited amount of work directly comparable to our own, especially given our concentration on 
improvisation and open-ended language. However, Façade [7] included shallow natural language 
processing for characters’ open-ended utterances. But the detection of major emotions, rudeness 
and value judgements is not mentioned. Zhe and Boucouvalas [8] demonstrated an emotion 
extraction module embedded in an Internet chatting environment. Unfortunately the emotion 
detection focuses only on emotional adjectives, and does not address deep issues such as 
figurative expression of emotion. Also, the concentration purely on first-person emotions is 
narrow. Our work is thus distinctive in these aspects, including affect detection in metaphorical 
language and context profiles, and also from first-person and third-person perspectives. 
 
Various characterizations of emotion are used in emotion theories. The OCC model uses emotion 
labels (anger, etc.) and intensity, while Watson and Tellegen [9] use positivity and negativity of 
affect as the major dimensions. We have drawn ideas from several such sources. We use an 
evaluation dimension (negative-positive), affect labels, and intensity. The basic emotion labels 
(such as ‘angry’) we use are taken from Ekman [10], while other comparatively complex affect 
labels (such as ‘approving’) are taken from the OCC model. There are 25 affect labels used in our 
system currently. Affect labels plus intensity are used when strong text clues signalling affect are 
detected, while the evaluation dimension plus intensity is used when only weak text clues are 
detected. In this paper, although first we briefly summarize our previous implementation in section 
2.1 & 2.2, we mainly emphasis our new implementations on metaphorical figurative language 
processing in section 2.3, and affect interpretation based on context in section 2.4 and user 
testing evaluation for the AI agent and the overall affect sensing component in section 3. We 
draw conclusion and identify future work in section 4. 
 

2. THE AFFECT DETECTION PROCESSING 
Before any automatic recognition and response components could be built for use in our 
automated AI actor, a detailed analysis of the language used in e-drama sessions was 
necessary. A small corpus of sessions was analysed by hand to identify the range of linguistic 
forms used and to provide insight for the automatic processing. In fact, this analysis is often very 
difficult and unreliable but it does reveal some important observations. The language used in e-
drama is complex and idiosyncratic, e.g. often ungrammatical and full of abbreviations, mis-
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spellings, etc. Moreover, the language contains a large number of weak cues to the affect that is 
being expressed. These cues may be contradictory or they may work together to enable a 
stronger interpretation of the affective state. In order to build a reliable and robust analyser of 
affect it is necessary to undertake several diverse forms of analysis and to enable these to work 
together to build stronger interpretations. 
 
2.1 Pre-processing Modules 
The language created in e-drama sessions severely challenges existing language-analysis tools if 
accurate semantic information is sought, even in the limited domain of restricted affect-detection. 
Aside from the complications noted above, the language includes slang, use of upper case and 
special punctuation (such as repeated exclamation marks) for affective emphasis, repetition of 
letters, syllables or words for emphasis, and open-ended interjective and onomatopoeic elements 
such as “hm”, “ow” and “grrrr”. To deal with the misspellings, abbreviations, letter repetitions, 
interjections and onomatopoeia, several types of pre-processing occur before the main aspects of 
detection of affect. We have reported our work on pre-processing modules to deal with these 
language phenomena in detail in [11, 25]. 
 
2.2 Affect Detection using Rasp, Pattern Matching & WordNet and Responding Regimes 
One useful pointer to affect is the use of imperative mood, especially when used without 
softeners such as ‘please’ or ‘would you’. Strong emotions and/or rude attitudes are often 
expressed in this case. Expression of the imperative mood in English is surprisingly various and 
ambiguity-prone. We have used the syntactic output from the Rasp parser [12] and semantic 
information in the form of the semantic profiles for the 1,000 most frequently used English words 
[13] to deal with certain types of imperatives. 
 
In an initial stage of our work, affect detection was based purely on textual pattern-matching rules 
that looked for simple grammatical patterns or templates partially involving specific words or sets 
of specific alternative words. This continues to be a core aspect of our system but we have now 
added robust parsing and some semantic analysis, including but going beyond the handling of 
imperatives discussed above.  
 
A rule-based Java framework called Jess is used to implement the pattern/template-matching 
rules in the AI agent allowing the system to cope with more general wording. This procedure 
possesses the robustness and flexibility to accept many ungrammatical fragmented sentences. 
The rules conjecture the character’s emotions, evaluation dimension (negative or positive), 
politeness (rude or polite) and what response the automated actor should make. However, it 
lacks other types of generality and can be fooled when the phrases are suitably embedded as 
subcomponents of other grammatical structures. In order to go beyond certain such limitations, 
sentence type information obtained from the Rasp parser has also been adopted in the pattern-
matching rules. This information not only helps the AI agent to detect affective states in the user’s 
input (such as the detection of imperatives), and to decide if the detected affective states should 
be counted (e.g. affects detected in conditional sentences won’t be valued), but also contributes 
to proposing appropriate responses. 
 
Additionally, a reasonably good indicator that an inner state is being described is the use of ‘I’, 
especially in combination with the present or future tense (e.g. ‘I’ll scream’, ‘I hate/like you’, and ‘I 
need your help’). We especially process ‘the first-person with a present-tense verb’ statements 
using WordNet.  
 
We have also created responding regimes for the AI character. Most importantly, the AI agent 
can adjust its response likelihood according to how confident the AI agent is about what it has 
discerned in the utterance at hand. Especially, in order to make contributions to the improvisation 
progression, the AI agent also has a global view of the drama improvisation. Briefly, the 
knowledge base of the AI actor provides scenario’s background knowledge for each human 
character. The AI agent can raise various scenario-related topics in its role for the human 
characters according to the detected affective states and topics discussed in the text input by 
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using the rule-based reasoning based on the knowledge base. Inspection of the transcripts 
collected in the user testing indicates that the AI actor usefully pushed the improvisation forward 
on various occasions (see section 3). Details of the work reported in this section can be found in 
[11, 25].    
 
2.3 Metaphorical Language Understanding in the AI Actor 
The metaphorical description of emotional states is common and has been extensively studied 
[14, 15]. E.g.: “He nearly exploded” and “Joy ran through me,” where anger and joy are being 
viewed in vivid physical terms. Such examples describe emotional states in a relatively explicit if 
metaphorical way. But affect is also often conveyed more implicitly via metaphor, as in “His room 
is a cess-pit”: affect (such as ‘disgust’) associated with a source item (cess-pit) gets carried over 
to the corresponding target item (the room). In other work, we have conducted research on 
metaphor in general (see, e.g. [16, 17]), and are now applying it to this application, and 
conversely using the application as a useful source of theoretical inspiration. 
 
In our collected transcripts, metaphorical language has been used extensively to convey 
emotions and feelings. One category of affective metaphorical expressions that we’re interested 
in is ‘Ideas/Emotions as Physical Objects” [16, 17], e.g. “joy ran through me”, “my anger returns in 
a rush”, “fear is killing me” etc. In these examples, emotions and feelings have been regarded as 
external entities. The external entities are often, or usually, physical objects or events. Therefore, 
affects could be treated as physical objects outside the agent in such examples, which could be 
active in other ways [16]. Implementation has been carried out to provide the affect detection 
component the ability to deal with such affect metaphor. We mainly focus on the user input with 
the following structures: ‘a singular common noun subject + present-tense lexical verb phrase’ or 
‘a singular common noun subject + present-tense copular form + -ing form of lexical verb phrase’. 
WordNet-affect domain (part of WordNet-domain 3.2) [18] has been used in our application. It 
provides an additional hierarchy of ‘affective domain labels’, with which the synsets representing 
affective concepts are further annotated (e.g. ‘panic’ is interpreted as ‘negative-fear -> negative-
emotion -> emotion -> affective-state -> mental-state’). Also with the assistance of the syntactic 
parsing from Rasp, the input “panic drags me down” is interpreted as ‘a mental state + an activity 
+ object (me)’. Thus the system regards such expression as affective metaphor belonging to the 
category of ‘affects as entities’. 
 
In daily expressions, food has been used extensively as metaphor for social position, group 
identity, religion, etc. E.g. food could also be used as a metaphor for national identity. British have 
been called ‘roastbeefs’ by the French, while French have been referred to as ‘frogs’ by the 
British. In one of the scenarios we used (school bullying), the big bully has called the bullied 
victim (Lisa) names, such as “u r a pizza”, “Lisa has a pizza face” to exaggerate that fact that the 
victim has acne. Another most commonly used food metaphor is to use food to refer to a specific 
shape. E.g. body shape could be described as ‘banana’, ‘pear’ and ‘apple’ 
(http://jsgfood.blogspot.com/2008/02/food-metaphors.html). In our application, “Lisa has a pizza 
face” could also be interpreted as Lisa has a ‘round (shape)’ face. Therefore, insults could be 
conveyed in such food metaphorical expression. We especially focus on the statement of 
‘second-person/a singular proper noun + present-tense copular form + food term’ to extract affect. 
A special semantic dictionary has been created by providing semantic tags to normal English 
lexicon. The semantic tags have been created by using Wmatrix [19], which facilitates the user to 
obtain corpus annotation with semantic and part-of-speech tags to compose dictionary. The 
semantic dictionary created consists mainly of food terms, animal names, measureable adjectives 
(such as size) etc with their corresponding semantic tags due to the fact they have the potential to 
convey affect and feelings.  
 
In our application, Rasp informs the system the user input with the desired structure - ‘second-
person/a singular proper noun + present-tense copular form + noun phrases’ (e.g. “Lisa is a 
pizza”, “u r a hard working man”, “u r a peach”). The noun phrases are examined in order to 
recover the main noun term. Then its corresponding semantic tag is derived from the composed 
semantic dictionary if it is a food term, or an animal-name etc. E.g. “u r a peach” has been 
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regarded as “second-person + present-tense copular form + [food-term]”. WordNet [20] has been 
employed in order to get the synset of the food term. If among the synset, the food term has been 
explained as a certain type of human being, such as ‘beauty’, ‘sweetheart’ etc. Then another 
small slang-semantic dictionary collected in our previous study containing terms for special 
person types (such as ‘freak’, ‘angle’) and their corresponding evaluation values (negative or 
positive) has been adopted in order to obtain the evaluation values of such synonyms of the food 
term. If the synonyms are positive (e.g. ‘beauty’), then we conclude that the input is an 
affectionate expression with a food metaphor (e.g. “u r a peach”).  
 
However, in most of the cases, WordNet doesn’t provide any description of types of human 
beings when explaining a food term (e.g. ‘pizza’, ‘meat’ etc). According to the nature of the 
scenarios (e.g. bullying) we used, we simply conclude that the input implies insulting with a food 
metaphor when calling someone food terms (“u r walking meat”, “Lisa is a pizza”).  
 
Another interesting phenomenon drawing our attention is food as shape metaphor. As mentioned 
earlier, food is often used as a metaphor to refer to body shapes (e.g. “you have a pear body 
shape”, “Lisa has a garlic nose”, “Lisa has a pizza face”). They might indicate literal truth, but 
most of which are potentially used to indicate very unpleasant truth. Thus they could be regarded 
as insulting. We extend our semantic dictionary created with the assistance of Wmatrix by adding 
terms of physiological human body parts, such as face, nose, body etc. For the user’s input with a 
structure of ‘second-person/a singular proper noun + have/has + noun phrases’ informed by 
Rasp, the system provides a semantic tag for each word in the object noun phrase. If the 
semantic tag sequence of the noun phrase indicates that it consists of a food term followed by a 
physiological term (‘pizza face’), the system interprets that the input implies insulting with a food 
metaphor. 
 
However, examples, such as “you have a banana body shape” and “you are a meat and potatoes 
man”, haven’t been used to express insults, but instead the former used to indicate a slim body 
and the latter to indicate a hearty appetite and robust character. Other examples such as “you are 
what you eat” could be very challenging theoretically and practically. In order to gain more 
flexibility and generalization when dealing with metaphorical expressions, we have also used a 
statistical-based machine learning approach to conduct some experiments on the recognition of 
the above affect and food metaphors. 
 
2.4 Context-based Affect Detection 
Our previous affect detection has been performed solely based on individual turn-taking user 
input. Thus the context information has been ignored. However, the contextual and character 
profiles may influence the affect conveyed in the current input. In this section, we are going to 
discuss cognitive emotion simulation for individual characters and contextual emotion modeling 
for other characters’ influence towards the current speaking character in communication context 
and our approach developed based on these features to interpret affect from context.  
 
In our study, we previously noticed some linguistic indicators for contextual communication in the 
recorded transcripts. E.g. one useful indicator is (i) imperatives, which are often used to imply 
negative or positive responses to the previous speaking characters, such as “shut up”, “go on 
then”, “let’s do it” and “bring it on”. Other useful contextual indicators are (ii) prepositional phrases 
(e.g. “by who?”), semi-coordinating conjunctions (e.g. “so we are good then”), subordinating 
conjunctions (“because Lisa is a dog”) and coordinating conjunctions (‘and’, ‘or’ and ‘but’). These 
indicators are normally used by the current ‘speaker’ to express further opinions or gain further 
confirmation from the previous speakers.  
 
In addition, (iii) short phrases for questions are also used frequently in the transcripts to gain 
further communication based on context, e.g. “where?”, “who is Dave” or “what”. (iv) Character 
names are also normally used in the user input to indicate that the current input is intended for 
particular characters, e.g. “Dave go away”, “Mrs Parton, say something”, “Dave what has got into 
you?” etc. Very often, such expressions have been used to imply potential emotional contextual 
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communication between the current speaking character and the named character. Therefore the 
current speaking characters may imply at least ‘approval’ or ‘disapproval’ towards the 
opinions/comments provided by the previous named speaking characters. Finally there are also 
(i) some other well known contextual indicators in Internet relay chat such as ‘yeah/yes followed 
by a sentence (“yeah, we will see”, “yeah, we cool Lisa”)’, “I think so”, ‘no/nah followed by a 
sentence’, “me too”, “exactly”, “thanks”, “sorry”, “grrrr”, “hahahaha”, etc. Such expressions are 
normally used to indicate affective responses to the previous input. However, these linguistic 
indicators act as very limited signals for contextual communication. There are still cases (“ur a 
batty 2 then okay”, “the rest dropped out cuz they didn’t want to play with a gay”, “I want to talk 
about it now”) that contextual affect analysis fails to be activated to derive affect implied in the 
user’s input. In the work reported here, we intend to deal with such difficulties by activating 
contextual affect analysis even for input with structures of “subjects + verb phrases + objects”. 
Especially an input with a structure of ‘second person + copular form (you are)’ tends to convey 
insulting in our application (“u r a batty 2 then okay”, “u r walking meat” etc). 
 
2.4.1 Emotion Modeling using Bayesian Networks 
Lopez et al. [26] has suggested in their work that context profiles for affect detection have been 
referred to social, environmental and personal contexts. In our study, personal context may be 
regarded as one’s own emotion inclination or improvisational mood in communication context. 
Bayesian networks have been used to simulate such personal emotion context. E.g. in this 
Bayesian network, we regard the first emotion experienced by a user as A, the second emotion 
experienced by the same user as B, and the third emotion experienced as C. We believe that 
one’s own emotional states have a chain reaction effect. For example, the previous emotional 
status may influence later emotional experience. We have made attempts to embody such chain 
effects into emotion modeling for personal context. We assume that the second emotional state 
B, in any combination is dependent on the first emotional state A. Further, we assume that the 
third emotional state C, is dependent on both the first and second emotional states A and B. In 
our application, if we only consider two most recent emotional states the user experiences as the 
most related relevant context based on Relevance theory [21, 22], then we may predict what the 
most probable emotion the user is the most likely to experience in the next turn-taking using a 
Bayesian network. 
 
A Bayesian network employs a probabilistic graphical model to represent causality relationship 
and conditional (in)dependencies between domain variables. It allows combining prior knowledge 
about (in)dependencies among variables with observed training data via a directed acyclic graph. 
It has a set of directed arcs linking pairs of nodes: an arc from a node X to a node Y means that X 
(parent emotion) has a direct influence on Y (successive emotion). Such causal modeling 
between variables reflects the chain effect of emotional experience. It uses the conditional 
probability (P[B|A], P[C|A,B]) to reflect such influence between prior emotional experiences to 
successive emotional expression. The following network topology has been used to model 
personal contextual emotional profiles in our application. 

 
FIGURE 1: An Emotion Network 

 
In Figure 1, conditional probabilities are needed to be calculated for the emotional state C given 
any combination of the emotional states A and B. Theoretically, emotional states A and B could 
be any combination of potential emotional states. Similarly, since there could be several 

A C 

B 
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emotional states considered as successive emotional state C, we have considered a conditional 
probability for each potential successive emotional state. In our application, we have mainly 
considered the following 10 most frequently used emotional states for the simulation of the 
improvisational mood for a particular character in the Bayesian network: ‘neural’, ‘happy’, 
‘approval’, ‘grateful’, ‘caring’, ‘disapproval’, ‘sad’, ‘scared’, ‘insulting’, and ‘angry’. Any combination 
of the above emotional states could be used as prior emotional experience of the user. Altogether 
the overall combinations for the two prior emotions are counted as 100 (10 * 10). Also each 
conditional probability of each emotional state in the above given two prior emotional experiences 
(such as P[happy| A,B], P[approval| A,B] etc) will be calculated as the confidence for later 
selection. Then the emotional state with the highest conditional probability, P[C|A,B], will be 
chosen as the most probable emotional experience the user may express in his/her very next 
turn-taking. In this way, we model contextual emotional chain effect for an individual character to 
benefit our contextual affect detection.  
 
An advantage of using Bayesian networks for emotion simulation and modeling is that it is not 
necessary to gather training data from other sessions of the same scenarios to train the system at 
the beginning to allow future prediction. We can simply use the emotional states experienced by a 
particular character throughout the improvisation as the prior input emotions to the Bayesian 
network so that our system may learn about this user’s emotional trend and mood gradually 
without any constrains set by the training data or scenario related information.  
 
Moreover we also take a frequency approach to determine the conditional probabilities. When an 
affect has been detected from the user’s input, we increment a counter for that expressed 
emotion given the two prior implied emotional states. An example conditional probability table has 
been shown in Table 1.  
 

 Probability of the predicted emotional state 
C being: 

Emotion A Emotion B Happy Approval ... Angry 
Happy Neutral P00 P01 ... P09 
Neutral Angry P10 P11 ... P19 
Disapproval Disapproval P20 P21 ... P29 
Angry  Angry P30 P31 ... P39 

 
TABLE 1: Conditional Probability Table for Emotions Expressed 

 

When making a prediction for an emotion state mostly likely to be shown in the very next input for 
one particular character, the two prior emotional states are used to determine which row to 
consider in the conditional probability matrix, and select the column with the highest conditional 
probability as the final output. Example conditional probability calculations are shown in the 
following formulas, where N represents the total number of emotions shown so far by this 
particular character and N with a subscript indicates the number of a particular emotion shown 
given previously expressed emotions. E.g., Nhappy_neutral_happy indicates the occurrences that two 
prior emotions A and B are respectively happy & neutral and the following emotional state C is 
happy. 
 
P(A = happy) = Nhappy/N 
P(B = neutral) = Nneutral/N  
P(B = neutral| A = happy) = Nneutal_happy/N 
P(C = happy| A = happy, B = neutral) = Nhappy_neutral_happy/NAB 
  
As we mentioned earlier, the probabilities are not necessarily to be produced by any training data 
and stored in advance. The frequencies are sufficient to use to calculate probabilities when 
required. In our case, we store the frequencies of emotion combinations in a 100 * 10 ((A*B) * C) 
matrix dynamically.  
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In our application, one of the scenarios has been used for user testing is Homophobic bullying. 
We briefly introduce this scenario in the following since example transcripts have been taken from 
this scenario for the discussion of the contextual affect detection implementation reported here. 
The character Dean (16 years old), captain of the football team, is confused about his sexuality. 
He has ended a relationship with a girlfriend because he thinks he may be gay and has told her 
this in confidence. Tiffany (ex-girlfriend) has told the whole school and now Dean is being bullied 
and concerned that his team mates on the football team will react badly. He thinks he may have 
to leave the team. The other characters are; Tiffany who is the ring leader of the bullying, and 
wants Dean to leave the football team, Rob (Dean’s younger brother) who wants Dean to say he 
is not gay to stop the bullying, Lea (Dean’s older sister) who wants Dean to be proud of who he is 
and ignore the bullying, and Mr Dhanda (PE Teacher) who needs to confront Tiffany and stop the 
bullying. 
 
Suppose we have the following sequence of example interaction extracted from the recorded 
transcripts for the Tiffany character in this scenario. Based on the affect detection purely from the 
analysis of each individual input, we obtained the emotional states implied in the first three inputs 
from Tiffany as the following:  ‘angry, angry, and angry’. 
 
Tiffany: Dean, U R DISGUSTING!! u shuld leav da football team. [angry] 
... 
Tiffany: shut up man lea [angry] 
... 
Tiffany: u get out of here. [angry] 
... 
Tiffany: ur a batty 2 then okay [neutral] -> [angry] 
 
Also we have derived ‘neutral’ for the very last input without any contextual inference. Since the 
input has a structure of “second person + copular form”, as discussed earlier which is very often 
used to convey insulting or compliment in our application, the context-based affect analysis will 
be activated to adjust/predict the affect conveyed in the last input from the above example 
transcript. This emotional sequence implied by Tiffany (‘angry, angry, and angry’) will be used to 
‘train’ the contextual emotional simulation and construct the Bayesian probability matrix, which 
will be used to predict the most probable emotion implied in Tiffany’s very last input. In this 
example, we need to calculate the conditional probability of P[C| angry, angry, angry] for each 
potential emotional state C. Finally the emotional state ‘angry’ has achieved the highest 
probability result and been predicted as the most probable emotion implied in the input “ur a batty 
2 then okay”. Thus we adjust the emotional state for the very last input from ‘neutral’ to ‘angry’. 
 
Therefore in this way, we can produce emotion modeling for each individual character within the 
same and across scenarios. However, other contextual profiles (such as other characters’ 
emotional profiles and discussion topics) are still needed to further justify the affect detected 
using the above discussed Bayesian network approach. In the following section, we introduce 
how social emotional contextual profiles are used to model emotional influence from other 
characters to the current speaking character during the improvisation. 
 
2.4.2 Emotional Social Context Modeling using Unsupervised Neural Networks 
The simulation of one’s own emotional context and improvisational mood is important, but the 
modeling of other characters’ emotional influence to the current speaking character is also crucial 
for the accurate interpretation of the affect implied in the current input. For example, the 
emotional context contributed by other participants, e.g. friend or enemy characters, may 
(dramatically) affect the speaking character’s emotional expression in the next turn-taking in our 
application. Moreover, a discussion topic or an improvisation is composed of the mixture of such 
emotional sub-contexts. They take the overall forms of being positive or negative and have been 
acted as the most relevant emotional social context to the current speaking character. If such 
social positive/negative most relevant context could be recognized during the improvisation, it is 
very helpful to justify the affective states detected from personal context modeling using the 
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above discussed Bayesian approach. In order to recognize the positive/negative trend in the most 
related sub-context contributed by (part of) participants, an unsupervised neural network learning 
algorithm has been employed. I.e. Adaptive Resonance Theory-1 (ART1) has been used in our 
application to derive general emotional implication (positive/negative/neutral) for the most recent 
interaction context. 
 
Generally, ART is a collection of models for unsupervised learning, which deals with object 
identification and recognition generally as a result of the interaction of ‘top-down’ observer 
expectations with ‘bottom-up’ sensory information. The ‘top-down’ template or prototype will be 
used to compare with the actual features of an object as detected by the senses to produce 
categorizations for the observed objects. ART-1 in particular has been used to resolve stability 
and plasticity dilemma, i.e. the ability to maintain previously learned knowledge (‘stability’) while 
still being capable of learning new information (‘plasticity’). Although it mainly accepts binary input 
vectors, this is sufficient enough in our application currently. In our application, it would be 
beneficial that the positive/negative context prediction modeling is capable of both retaining 
previously learned information (e.g. the sensing of positive or negative context in a particular 
scenario) and in the meantime integrating newly discovered knowledge (e.g. the sensing of such 
context across different scenarios). Such capability may allow the emotional social context 
modeling to perform across scenarios. Also, the ART-1 algorithm has an advanced ability to 
create a new cluster when required with the assistance of a vigilance parameter. It may help to 
determine when to cluster a feature vector to a ‘close’ cluster or when a new cluster is needed to 
accommodate this feature vector.  
 
In our application, we use the evaluation values (positive and negative) and neutralization of the 
most recent several turn-taking as the input to ART-1. In detail, for each user input, we convert its 
emotional implication into pure positive or negative and use three binary values (0 or 1) to 
represent the three emotional implications: neutral, positive and negative. For example, for the 
input from Arnold in the Crohn’s disease scenario (another scenario used in our application), 
“dont boss me about wife [angry]” when the wife character, Janet, was too pushy towards the 
husband character, Arnold. We have used ‘0 (neutral), 0 (positive), and 1 (negative)’ to indicate 
the emotional inclination (‘angry’ -> ‘negative’) in the user input. Another example transcript taken 
from the Homophobic bullying scenario is listed in the following. 
 

1. Tiffany Tanktop: sorry, all io could hear was I'M A BIG GAY [insulting/angry] 
2. Mr. Dhanda: TIFFANY I WILL....GET YOU EXPENDED IF YOU DONT FOLLOW MY 

ORDERS! YOU HOMO-FOBIC [angry] 
3. Rob Hfuhruhurr: tiffany is wierd lol y she spreadn rumors etc???? [disapproval] 
4. Tiffany Tanktop: there not rumours...its the truth [disapproval] 
5. Tiffany Tanktop: GGGGAAAYYYYY! [insulting/angry] 
6. Mr. Dhanda: TIFFANY STOP IT NOW!!! [angry] 
7. Mr. Dhanda: ILL BANG YOU [angry] 
8. Rob Hfuhruhurr: god leav hm alone!!! [angry] 
9. Tiffany Tanktop: ONCE A BATTY ALWAYS A BATTY [neutral] -> [angry] 

 
For the very last input from Tiffany, we can only interpret ‘neutral’ based on the analysis of the 
input itself without using any contextual inference although emotional states have been derived 
for all the other input based on the analysis the input themselves. In order to further derive/justify 
the affect conveyed in the very last ‘neutral’ input although there is no any linguistic indicator for 
contextual communication existing, we resort to the prediction of the general emotional trend 
using the most related interaction context contributed by several participant characters. Since 
normally in one session, up to 5 characters are involved in the improvisation as mentioned 
previously, except for the last input, we have taken the previous last four inputs to the current last 
input as the most related context for prediction of the positive/negative inclination in the social 
context. Thus we have taken the input from Rob (8th input), Mr Dhanda (7th and 6th input), and 
Tiffany (5th input) for consideration and prediction. Since Tiffany implies ‘angry’ (binary value 
combination for neutral, positive and negative: 001) by saying “GGGGAAAYYYYY!”, Mr Dhanda 
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also indicating ‘angry’ (001) in both of his input: “TIFFANY STOP IT NOW!!!” and “ILL BANG 
YOU”, followed by another ‘angry’ (001) input from Rob “god leav hm alone!!!”, we have used the 
following feature vector to represent this most related discussion context: ‘001 001 001 001 
(angry, angry, angry and angry)’. This feature vector is used as the input to the ART-1 
unsupervised learning algorithm to determine its category belongingness. In a similar way, we 
can gather a set of such feature vectors from the same and across scenarios. ART-1 will classify 
these feature vectors into different groups based on their similarities and differences shown in the 
vectors, which sometimes may not be apparent at the beginning. 
 
Briefly, we begin the ART-1 algorithm with a set of unclustered emotional context feature vectors 
and some number of clusters. For each emotional feature vector, ART-1 makes attempts to find 
the cluster to which it’s closest. A similarity test calculates how close the feature vector to the 
cluster vector. The higher the value, the closer the vector is to the cluster. If a feature vector is 
sufficiently close to a cluster, we then test for vigilance acceptability, which is the final determiner 
for whether the feature vector should be added to the particular cluster. If a feature vector also 
passes the vigilance test, then we assign it to and update that particular cluster with the features 
of the new addition. If a feature vector fails the similarity test or vigilance test for all the available 
clusters, then a new cluster is created for this feature vector. When new clusters are created, 
some feature vectors may drop out of a cluster and into another based on new feature vectors 
being added and adjusting the cluster vector. Thus ART-1 will start the process again by checking 
through all the available feature vectors. If no feature vector needs to change its cluster, the 
process is complete. In our application, we can gradually feed emotional context feature vectors 
to ART-1, which will not only remain the previous classification of positive or negative context in a 
particular scenario, but also indefinitely integrate new positive/negative context extracted from 
other interaction across scenarios. Suppose we have the following emotional contexts contributed 
by the Crohn’s disease scenario and classified previously by ART-1 into three categories: 
 
Class 0 contains: 
 
0  [1 0 0 0 0 1 0 0 1 0 0 1 ] negative1 (Neutral, sad, disapproving and sad) 
1  [1 0 0 0 1 0 0 0 1 0 0 1 ] negative2 (Neutral, approving, disapproving and angry) 
2  [1 0 0 0 0 1 0 0 1 1 0 0 ] negative3 (neutral, disapproving, disapproving and neutral) 
3  [0 0 1 0 1 0 0 0 1 0 0 1 ] negative4 (angry, approving, disapproving, and angry) 
5   [1 0 0 0 0 1 0 0 1 0 1 0 ] negative6 (neutral, angry, angry and approving) 
 
Class 1 contains: 
 
 4  [0 0 1 0 0 1 1 0 0 1 0 0 ] negative5 (angry, angry, neutral and neutral) 
 8  [1 0 0 0 1 0 1 0 0 0 0 1 ] positive3 (neutral, caring, neutral and disapproval) 
 9  [1 0 0 1 0 0 1 0 0 1 0 0 ] neutral1 (neutral, neutral, neutral and neutral) 
 
Class 2 contains: 
 
 6   [0 1 0 0 1 0 0 1 0 1 0 0 ] positive1 (happy, happy, happy and neutral) 
 7   [1 0 0 0 1 0 0 1 0 0 1 0 ] positive2 (neutral, caring, approving and happy) 
 10 [0 1 0 0 1 0 1 0 0 0 1 0] positive4 (approval, grateful, neutral and approval) 
 
Since ART-1 is not aware which label it should use to mark the above each category although it 
classifies the emotional feature vectors based on their similarities and differences and achieves 
the above classification, a simple algorithm will make attempts to assign labels 
(positive/negative/neutral context) to the above classification based on the majority vote of the 
evaluation values of all the emotional states shown in each feature vector in each category. For 
example, Class 0 has assigned 4 emotional feature vectors and most of the emotional states in 
all the feature vectors in this category are ‘negative’, therefore it is labelled as ‘negative context’. 
Similarly Class 1 is recognised as ‘neutral context’ with Class 2 identified as ‘positive context’. If 
we add the above example emotional context from the Homophobic bullying scenario as a new 
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feature vector, ‘001 001 001 001’ (angry, angry, angry and angry), to the algorithm, we have 
Class 0 updated to accommodate the newly arrived feature vector as output. Thus the new 
feature vector is ‘classified’ as ‘negative context’. Therefore, the last input from Tiffany (“ONCE A 
BATTY ALWAYS A BATTY”) is more likely to contain ‘negative’ implication rather than ‘neutral’ 
based on the consideration of its most relevant emotional context.  
 
In our application, the context-based affect analysis normally activates the personal context 
modeling using the Bayesian networks first and then follows the emotional social context 
modeling using ART-1 to justify or further derive the affect conveyed in the current input. For 
example, in the above Homophobic bullying example transcript, the emotional context of Tiffany 
is retrieved as ‘angry (1st input), disapproval (4th input) and angry (5th input)’. Thus we use the 
Bayesian network first to predict the most likely affective state conveyed in Tiffany’s very last 
input. The emotional state ‘angry’ has achieved the highest probability and been regarded as the 
affect mostly likely implied in the input (“ONCE A BATTY ALWAYS A BATTY”). Since the most 
relevant discussion context contributed by the 5th – 8th input is also sensed as being ‘negative’ 
using the ART-1 approach discussed above, we conclude that the very last input from Tiffany is 
more likely to be ‘angry’ with a strong intensity indicated by the capitalization. Thus we adjust the 
affect implied in the very last input from ‘neutral’ to ‘angry’.  
 
In this way, we can predict the next most probable emotional state based on a character’s 
previous emotional implications during the improvisation using the Bayesian networks and detect 
the ‘positive or negative’ emotional implication of the most related discussion context using 
unsupervised learning. The integration of both discussed approaches has great potential to derive 
affect in communication context which is closer to the user’s real emotional experience. Another 
advantage of our implementation is that it has the potential to perform contextual affect sensing 
across different scenarios.  
 
At the test stage, our affect detection component integrated with the AI agent detects affect for 
each user input solely based on the analysis of individual turn-taking input itself as usual. The 
above algorithms for context-based affect sensing will be activated when the affect detection 
component recognizes ‘neutral’ from the current input during the emotionally charged proper 
improvisation and the input also containing statement structures.  
 
In this way, by considering the potential improvisational mood one character was in and recent 
social emotional profiles of other characters, our affect detection component has been able to 
inference emotion based on context to adjust the affect interpreted by the analysis based on 
individual turn-taking user input. After the description of various affect processing components, 
the overall affect detection model is shown in Figure 2. 
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FIGURE 2: The Affect Detection Model  

 
FIGURE 3: Affect Detection and the Control of Characters 

 
The detected affective states from users’ open-ended text input play an important role in 
producing emotional animation of human players’ avatars. The emotional animation mainly 
includes emotional gesture and social attention (such as eye gazing). The expressive animation 
engine, Demeanour [23], makes it possible for our characters to express the affective states 
detected by the AI actor, EMMA. When it detects an affective state in a user’s text input, this is 
passed to the Demeanour system attached to this user’s character and a suitable emotional 
animation is produced. The Demeanour system has also used character profiles, particularly 
including personality traits and relationships with other characters, to provide expressive 
animation for other avatars when the ‘speaking’ avatar experiences affect. How the detected 
affective states inform the animation engine and control the AI agent is illustrated in Figure 3. 
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3. USER TESTING OF THE IMPROVISATIONAL AI ACTOR 
We conducted an intensive user test with 160 secondary school students, in order to try out and 
refine a testing methodology. The aim of the testing was primarily to measure the extent to which 
having the AI agent as opposed to a person play a character affects users’ level of enjoyment, 
sense of engagement, etc. We concealed the fact that the AI-controlled agent was involved in 
some sessions in order to have a fair test of the difference that is made. We obtained surprisingly 
good results. Having a minor bit-part character called “Dave” played by the AI agent as opposed 
to a person made no statistically significant difference to measures of user engagement and 
enjoyment, or indeed to user perceptions of the worth of the contributions made by the character 
“Dave”. Users did comment in debriefing sessions on some utterances of Dave’s, so it was not 
that there was a lack of effect simply because users did not notice Dave at all. Furthermore, it 
surprised us that few users appeared to realize that sometimes Dave was computer-controlled. 
We stress, however, that it is not an aim of our work to ensure that human actors do not realize 
this.  
 
Inspection of the transcripts collected indicates that the AI agent usefully pushed the 
improvisation forward on various occasions. Figure 4 shows an example about how the AI actor 
contributed to the drama improvisation in Crohn’s disease scenario. Briefly, in Crohn’s disease 
scenario, Peter has had Crohn’s disease since the age of 15. Crohn’s disease attacks the wall of 
the intestines and makes it very difficult to digest food properly. The character has the option to 
undergo surgery (ileostomy) which will have a major impact on his life. The task of the role-play is 
to discuss the pros and cons with friends and family and decide whether he should have the 
operation. The other characters are; Mum, who wants Peter to have the operation, Matthew 
(older brother) who is against the operation, Dad who is not able to face the situation, and David 
(the best friend) who mediates the discussion. In the example transcript shown in Figure 4, Dave 
was played by the AI actor, which successfully led the improvisation on the desirable track. In 
another scenario, the Homophobic bullying, used for the testing, Mr. Dhanda was sometimes 
played by EMMA and example transcripts are also shown that the AI actor has helped to push the 
improvisation forward. 
 
We have conducted an initial evaluation of the quality of the AI agent’s determinations about 
emotion during these testing sessions, by comparing the AI agent’s determinations during one of 
the Crohn’s disease improvisations with emotion labels later assigned offline by two members of 
our team (not involved in the development of the AI agent’s algorithms). We used the kappa 
statistic of Carletta [24]. It is a measure of the pairwise agreement among a set of coders making 
category judgements, correcting for expected chance agreement. The statistic, K, is calculated as 
K= (P(A)-P(E))/(1-P(E)) where P(A) is the proportion of times two coders agree and P(E) is the 
proportion of times we would expect them to agree if they categorized randomly. A value of at 
least 0.6 – 0.8 is generally required by researchers looking for good inter-annotator agreement. 
We calculated K for each pair among the three labellers (EMMA and two humans). The inter-
human K was only 0.35, and so it is not surprising that the EMMA/human values were only 0.34 
and 0.32. Although they are not ideal, at least these results give grounds for hope that our affect 
detection with further refinement can come near the rather low human/human level of agreement. 
Moreover, the overall accuracy rate of affect interpretation based on context in our current 
analysis achieves 68% via the comparison of the annotation of part of the recorded transcripts 
between human annotators and the AI agent in the Crohn’s disease scenario. 
 
From the inspection of the evaluation results, although context affect detection is provided, there 
are still some cases: when the two human judges both believed that user inputs carried negative 
affective states (such as angry, threatening, disapproval etc), EMMA regarded them as neutral. 
One most obvious reason is that some of the previous pipeline processing (such as dealing with 
mis-spelling, acronyms etc, and syntactic processing from Rasp etc) failed to recover the 
standard user input or recognize the complex structure of the input which led to less interesting 
and less emotional context for some of the characters and may affect the performance of 
contextual affect sensing. We also aim to extend the evaluation of the context-based affect 
detection using transcripts from other scenarios. Also, since the test transcripts contained a very 
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small number of metaphorical language phenomena comparatively, we intend to use other 
resources (e.g. Wallstreet Journal and other metaphorical databases (e.g. ATT-Meta)) to further 
evaluate the new development on metaphorical affect sensing. 
   

                                      
 

FIGURE 4: Part of an Example Transcript Produced in the User Testing 

 
The preliminary results from statistical analysis of the collected post questionnaires also indicate 
that when the AI actor is involved in the improvisation, users’ abilities to concentrate on the 
improvisation are somewhat higher in Crohn’s disease scenario than Homophobic bullying 
scenario. When the AI actor is not involved in the improvisation, users’ abilities to concentrate on 
the improvisation are a lot higher in Homophobic bullying than Crohn’s disease. This seems very 
interesting, as it seems to be showing that the AI actor can make a real positive difference to an 
aspect of user engagement when the improvisation is comparatively uninteresting.  

 
4. CONCLUSIONS 
Our work makes a contribution to the issue of what types of automation should be included in 
interactive narrative environments, and as part of that the issue of what types of affect should be 
detected (by directors, etc.) and how. Moreover, our work also makes a contribution to the 
development of automatic understanding of human language and emotion. Our contextual affect 
sensing shows initial directions for emotion modeling in personal and social context across 
scenarios. Future work could include the equipment of the AI agent with the ability of performing 
autonomous learning through metaphorical expressions. 
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Abstract 

 
In the article the results of development of machine translation expert system are 
presented. The approach of translation correspondences defining is suggested 
as a background for creation of data base and knowledge base of the system. 
Methods of transformation rule compiling applied for linguistic knowledge base of 
the expert system are based on the defining of translation correspondences 
between Azerbaijani and English languages.  
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1. INTRODUCTION   
In this paper we present the research to be conducted for building first the bilingual data base 
then knowledge base of machine translation expert system from English to Azerbaijani. The 
expert system (ES) of machine translation based on morphological and syntactic knowledge has 
been created for practical application of the automatic dictionary in the machine translation 
system, and also checks acknowledgement of theoretically developed principles.  

 
Developed system is realized on the basis of program Delphi 7 applied to the creation of control 
systems by databases and knowledge. The dictionary volume in the realized version makes 10 
000 inputs on each language in the dictionary of the combined type. On the basis of the dictionary 
the database created for a concrete subject domain, however, at an initial stage is realized words 
of neutral lexicon for check of the rules which are a part of the knowledge base have been 
included. ES uses certain initial lexicon, grammar, and also semantics for creation interlinguistic 
models - interlingva representation (IR) of various word-combinations within the limits of a simple 
sentence. The given system concerns a wide spectrum of the information systems dealing with 
processing of texts in natural languages, in particular, in dialogue systems, providing dialogue 
with databases and knowledge bases in rather free natural language.  

  

2. BRIEF DESCRIPTION Of AZERBAIJANI 
Azerbaijani is a member of the Turkic branch of the Altaic language family. Specifically, it belongs 
to the Oghuz Seljuk sub-group (Akiner 1986), along with (Osmanli) Turkish and some dialects of 
Crimean Tatar (Campbell 1991). Other well known members of the Turkic branch include: Uzbek, 
Kipchak, Kyrgyz, Tatar, and Kazakh. The Turkic languages closely resemble each other and form 
a complex of mutually intelligible dialects.  
Like all of the Turkic languages, Azerbaijani is agglutinative, that is, grammatical functions are 
indicated by adding various suffixes to fixed stems. Separate suffixes on nouns indicate both 
gender and number, but there is no grammatical gender. There are six nominal cases: 
nominative, genitive, dative, accusative, locative, and ablative; number is marked by a plural 
suffix. Verbs have voice, mood, tense, and nonfinite forms and they agree with their subjects in 
case and number, and, as in nouns, separate identifiable suffixes perform these functions.  
Subject-Object-Verb(SOV) word order in Azerbaijani is the norm, but other orders are possible 
under certain discourse situations. As a SOV language where objects precede the verb, 
Azerbaijani has postpositions rather than prepositions, and relative clauses that precede the verb. 
Azerbaijani has nine vowels and twenty three consonants. It also has Turkic vowel harmony in 
which the vowels of suffixes must harmonize with the vowels of noun and verb stems; thus, for 
example, if the stem has a round vowel then the vowel of the suffix must be round, and so on.  
In the research  both linguistic systems of English and Azerbaijani were studied in details in order 
to establish full list of universals and differences between them for further determination of 
translation correspondences within all levels of the language. 
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3.MODEL OF TRANSLATION CORRESPONDENCES 
As it is known basic notions of structural linguistics are mostly used in computational approaches. 
Analyzing the language for building computational model of a certain language one of the 
essential tasks is to define the set of feature and values relevant to its description. For processing 
of English-Azerbaijani texts in MT Expert system first there were defined properties of both 
languages, applying comparative analysis in order to define translation correspondences. After all 
morphological, morphonological and syntactic domains have been brushed through appropriate 
feature structures represents a whole set of basic structures.   
After long lasting overview of existing models that can be used as a background of a practically 
new approach to the knowledge and data bases creation we suggested translation 
correspondences model which has certain advantages among others. 

 
Translation as a specific process of inter language transformations concerns various language 
levels such as morphology, syntax, semantics and lexicology. In the translation complex 
interaction of these levels take place and new translation units such as translation 
correspondences appear as its result. These units refer to different language levels and this 
model reflects hierarchy of mentioned levels. Novelty of this model is that it can be placed in the 
centre of the whole model and modeling process. In the process of this model construction it was 
substantiated that most effective method to be taken as a guidance for building of both bases is 
method of correspondences selection. Elaboration of such method enables experts to choose 
most precise translation correspondences at all language levels and to provide optimum structure 
of expert system. While defining the notion of translation correspondences we proceed not only 
for translation equivalent from one language into the other because this factor refers not only to 
the lexical meaning of the word in the linguistic hierarchy. In the suggested approach determining 
of correspondences for grammatical categories, syntactic constructions and morpho-syntactic 
functions of words, word combinations and sentences is necessary condition providing adequacy 
and accuracy of translation. The wider spectrum of defined translation correspondences is with 
account of polysemy and multifunctional nature of language units the more complete the 
tokenized information filled into the data and knowledge bases would be, and thus it 
predetermines conditions for acquiring more accurate translation.  

 Translation process from one language into another is reduced to overcoming of divergences 
between languages. In MTES (machine-translation expert system) interlanguage divergences 
partially are taking away on each of analysis stages, and basically at a transfer stage. Difficulty of 
divergence overcoming is caused by that it is difficult to find translation correspondences between 
significant elements of languages with various structure.  

 

4. INTERACTION OF CONSTITUENTS OF MT EXPERT SYSTEM 
As it is known databases (DB) are most widespread technology for gathering, storage and 
processing of the huge data objects. However the latter do not allow to structure the data stored 
in them on the basis of the relations which exist between the facts directly in the real 
environment. Expert systems being large achievement of modern computer facilities and artificial 
intellect methods represent the specialized computer system capable to accumulation and 
generalization of experience of highly skilled experts. They also model reasoning of the experts in 
some certain area, using the knowledge base (KB)for this purpose, containing the facts and rules 
from this area and some procedure of a logic conclusion. 

  Industrially operating systems of machine translation give low quality translation and 
consequently require post editing. Experimental machine translation systems give more 
qualitative translation that essentially reduces a share of participation of the person in translation 
process. So, developed expert support system of machine translation works in an experimental 
mode and in this connection it can be characterized as experimental bilingual system of MT which 
uses full morphology, the limited syntax and partial semantics of applied languages. At the given 
stage of realization it is characterized by following properties: 

 • Full integrality of the descriptions of source and target languages. The principle of description 
integrality means that the morphology, syntax and the dictionary are completely co-ordinated with 
each other by the type of linguistic information replaced in it, and that this linguistic information in 
all three components is registered absolutely uniformly that is in the same formal languages.  

  • Declarativeness of the of linguistic knowledge set that is their total independence from 
algorithm. Declarativeness of the linguistic information set has two advantages at a stage of 
experimental operation of the system. Declaratively set linguistic model is easy to correct during 
machine experiments provided that the system simultaneously with translation of each phrase 
gives out a detailed protocol of its reception. This element is partially written down in expert 
support system of machine translation. 
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  • Standardized nature of working language description formats. Both of working languages 
English and Azerbaijani are described under uniform schemes. 

  • Directivity of the lingware on one subject domain. This property of the system is a direct 
consequence of incompleteness of linguistic models of working languages. Morphology and 
syntax of working languages being at the initial stage of design are intended for processing of 
various scientific and technical texts, that is the wide spectrum of forms and constructions are 
considered to be met. 

 • Filling of dictionary database without directivity on a certain subject domain takes place, as for 
check of rules as a part of the system, word forms of the general and neutral lexicon were 
chaotically filled in database. Considering the fact that that the entries included in the dictionary 
are filled enough and fundamental in other words are capable to provide the adequate analysis 
and translation of the given word. The higher translation quality is the more full and more basic is 
the model of language composing a linguistic component of machine translation system.    

  Two constituents of expert system such as database and knowledge base are presented in 
appropriate ways and their brief description is suggested below. 

    
4.1 Database of MT expert system 
Database incorporates automatic dictionary as a part of expert system which represents the 
storehouse of the tokenized information used for text processing. Application and use of this 
information  is possible only on the basis of its interaction with knowledge presented in knowledge 
base in the form of  transformation rules of recognition and generation for grammatical, phonetic 
and semantic language phenomena. For compiling of automatic dictionary as foundation of 
database of the machine translation expert system the following principles were proposed below: 
1. Comparison of genealogical origin of working pair of languages. 
2. Typological comparison and identification if universals and differences of the languages. 
3.Determining of lexical staff of the dictionary 
4. Lemmatization(selection of lemmas) and glossary compiling 
5. Selection of formal attributes of morpho-syntactic systems of both languages to define 
translation  
correspondences 
6. Formation of dictionary units for each part of speech. 
 
The automatic binary dictionary is developed as a part of the integrated translation system and 
used for performance of the following problems: 
- Serves as the basic tool of search (establishment) of lexical translation equivalents in ES; 
- For work in a dialogue mode the dictionary is integrated into the general lexicographic base of 
ES and is the main informatively-directory base; 
In ES as in one of systems of automatic text processing, automatic dictionary is a source of the 
grammatical information necessary for work of algorithms of automatic morphological and 
syntactic analyses, and also for work of lemmatization algorithms and knowledge base rules. The 
latter ensure functioning of the dictionary at the performance of the named functions in any 
paradigmatic form of a word.  
 
4.2  Classification of rules in linguistic knowledge base. 
Knowledge base of expert system is presented by a set productive rules each of which consists 
of: antecedent (conditions) and consequent (result) [2]. On a simple language of the user the rule 
consists of the right and left part. Knowledge represents a complex corrected unification (tree-
based) grammar which includes in the structure elements different grammars, such as: context-
free grammar (CFG) which is providing the morphological analysis and synthesis and being a 
basis of analyzer, linear grammar (LG) and constituent grammar which is providing morphological 
parse and synthesis. So, elements of CFG formalize the description of language model as formal 
grammar with finite-state set. Elements of LG fix a sequence of chain objects of formal-language 
model, that is the linear sentence structures of formal language model set in terms of grammatical 
classes of words. In the system  “left to right" analysis strategy is applied: search of words, check 
of conditions, presence or absence of changes on conditions and addition of missing elements 
formally represent computer realization of finite-state grammar or CFG constructed on LG.  
Formally transformation rules constitute foundation of knowledge base of expert system, and 
provide its functioning. Knowledge base can be divided into 3 blocks which in turn continuously 
co-operate with a database as a part of the analyzer of expert system. These blocks are possible 
be classified on: 
- Recognition rules is a block of rules where sentences in a source language passes after 
identification of availability of word forms or word-combinations in the automatic dictionary. There 
by means of recognition rules an establishment of grammatical forms of words and branch of 
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suffixes or other grammatical indicators take place. For example, it is possible to carry the 
description of plural nouns formation to recognition rules in the English language, coming to light 
by means of detection of those or other affix changes, at performance of the set conditions(Figure 
1) 
- Substitution rules block. The found translation equivalents are replaced by substitution rules into 
syntactic chained structures. The way of representation of a syntactic sentence structure at which 
groupings  of the words connected with each other are allocated, is called its system of 
components. Substitution rules are written down on the basis of combinability variations of parts 
of speech, and in an operating time of the syntactic block the established grammatical forms of 
sentence components pass to the stage of syntactic processing.(Figure 2 and Table 1) 
- Generation rules at last stage of text processing carry out synthesis of sentence components in 
target language. In this block rules there is the construction of chains each part of which is 
appropriate part of speech with determined grammatical attributes. All lexico-grammatical 
processing procedures which took  place in previous blocks are finally synthesized altogether and 
display the result generated in target Language.(figure 3) 

    Ns    
   Nsh 
   Nss  +  [es] 
    Nx 

    Nch 

    Nf +[es]                                                   

    Nfe + [s]         = [ves]  Na +lar(lər) 
 

Nc 

 

    N[0]  + [s]                    

           No+ [es]                 
 

Nv   Nvy +[s]  Na + lar(lər) 
    
      
       Ny   
                              Ncy + [es ]= Nies   

FIGURE 1. Formal Representation Of Translation Correspondences Of Nouns In Plural  In 
Translation From English Into Azrebaijani. 

 
Figure 1 schematically demonstrates the translation from English into Azerbaijani. So, let us open 
the given coding:    
 A noun ends with consonants/vowel phoneme and takes affix in the following cases: 
 - if noun ends with -s, - ss, -sh, -ch, -x  then it takes affix [-es]; 

 

- if noun ends with -f it takes affix [-es] and word form ends  [ves];

 - if noun ends with -fe it takes affix [-s] in consequence of what the word form ends with [ves];

 - if noun has zero flexion it takes affix [-s];   
- if noun ends with –o it takes affix [-es] (the list of exceptions is included in database);

 - if noun ends with –y it takes affix [-s] in combination of -y with vowel, but in combination of  –y 
with consonant, the word form takes affix [-es] in consequence of which the word form ends with 
[-ies]

 
With provision for all above named conditions required for plural word form recognition translation 
equivalent of English word in a target language is found in the database for generation of 
corresponding word forms  where the affix -lar is added to Azerbaijani translation equivalent, that 
is real for for words both with consonant and with vowel.
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FIGURE 2. Translation Correspondences of  Word Combination of Plural And Singular Nouns In 
Common And Possessive Cases 

 
 

In figure 2 the combinability of possessive noun with plural and singular nouns is shown as 
Azerbaijani is agglutinative language and the connection between words in the sentence is 
expressed by affixes. In the left part of the fraction we see that Azerbaijani noun N

A
  is also 

divided into N
C 

(noun with cnonsonant in the end) and
 
N

V
 (with final vowel). This kind of 

distinguishing is important point in Azerbaijani grammar.  
   

English verb tense formal 
representation 

Azerbaijani translation 
correspondences of  
English verb tense 

Present Simple 
Present 

Contin
uous  

 

S + VI /Vs 
S+ (am, is, are)+ 

Participle I 

S+(imperative)V
A
+ır

4
(yir)

4 
   

+personal affix 

Present Perfect 
 

S+ have + 
Participle II 

S+(imperative)V
A
+dı

4 
+personal 

      Affix 
Past Simple 
 

S+ VII/Ved S+(imperative)V
A
+ib

4
(mış)

4 
   

+personal 
      Affix 

TABLE 1. Azerbaijani Translation Correspondences of English Verb Tense Formal 
Representation   

 
Apart from above mentioned categories of English verb tenses were matched with their correspondences in 

Azerbaijani. Some of them found their translation correspondences but those which were not 
matched to the grammatical forms which can be substituted in output language. In the AD English 
verb is given in the form of infinitive without particle to but in Azerbaijani entry it is given as 
imperative  form of the verb(V

a
) without its infinitive affix –maq, -mək. This way of verb 

presentation facilitates further synthesis of output text.   
Translation correspondences for combinations of noun with prepositions which are common in 
English are expressed by 6 case affixes in Azerbaijani and it causes great difficulty for getting 
adequate translation. So, we matched  prepositions to the 6 cases available in output language. 
This process is also important for data of prepositional verb constructions because English texts 
are full of such combinations and their recognition would be easier if prepositional verbs would be 
coded as united word form by its possession to appropriate POS and also coded by its 
requirement of a certain case affix depending on the meaning it carries.[11] 

 

Azerbaijani case English preposition  
Genitive case Across, before, into, of, off, 

around, past, under 
Dative  case To, for, towards  
Accusative case  By 
Instrumental (ablative) 
Case 

Against, at, in, inside, on, during 

Prepositional 
Case 

About, after, except, from, out of, 
since, through, within 

sng Nc+ in4  sng +i4  

N`s+N 

pl 

Na 

Nv+n+ in4 

+ Na 

pl+lar2+i4 

ı +otaq(ğ) 
director`s              room                        direktor+un                              
                                                                                                                       
student`s             rooms                         tələbə+n+in                           lar+ı 



Guliyeva Zarifa 

 

International Journal of Computational Linguistics (IJCL), Volume (1): Issue (4)                              66 

TABLE 2. Translation correspondences of English prepositions to the noun cases in Azerbaijani 
 

 

 
 

FIGURE 3. Difference in Location of Parts of Sentences in English and Azerbaijani Simple Sentences. 
  

 As it is seen the table 1 in presents a few verb tenses we have identified that are corresponding 
for English verb tenses. Modal verb and different verb combinations are expressed in Azerbaijani 
by means of analytical forms of verbs. 
Figure 3 illustrates difference between word order of English and Azerbaijani(marked with 

A
). As it 

was mentioned in paragraph 2 Subject-Object - Predicate word order as in any Turkic language 
emerge many difficulties in tokenization simple sentences with participle I and II and their 
constructions, Gerundial and Infinitive constructions, as there is no similar category of gerund in 
Azerbaijani and translation correspondence of gerund is expressed in various ways, according to 
the construction. 

   

5. CONCLUSION AND FUTURE WORK 
As automatic text processing systems such as machine translation expert systems are advanced 
systems and include capabilities such as data conversion, finite-state transducer incorporating, 
collecting and processing numerous character sets, storage of huge volume and information, text 
retrieval and etc., English- Azerbaijani MT Expert System is of great demand hitherto, and as 
Azerbaijani can be referred to the list of lesser-studied languages many problems concerning 
formalization of this language are still remain unsolved. 
So, MT expert system is directs to provide adequate translation scientific and technical texts from 
English into Azerbaijani. Recently the analysis of scientific texts from both language sources have 
been conducted in order to determine most frequently used grammatical and lexical 
constructions. In this foreshortened we are planning to extend the database of the system to 
40 000 word forms and combinations and compile and input additional number of rules into the 
knowledge base for maintain more correct and accurate translation.        
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